Rademacher complexity properties 2: finite classes and margin losses

Administrative/Meta:

- Homework 2 is out; watch out for problems 3 and 4.
- Project writeups will probably need to only be 2 pages (or longer if you like); I’ll update on the webpage once I’m 100% sure of this.

Overview

As we’ve discussed in the past few lectures, symmetrization / Rademacher complexity give us the following bound.

Theorem. Let functions \(F \) be given with \(|f(z)| \leq c \) almost surely for every \(f \in F \). With probability \(\geq 1 - \delta \) over an i.i.d. draw \(S := (Z_1, \ldots, Z_n) \), every \(f \in F \) satisfies

\[
E f \leq \hat{E} f + 2\text{Rad}(F | S) + 3c \sqrt{\frac{2}{n} \ln \left(\frac{2}{\delta} \right)}.
\]

To make this meaningful to machine learning, we need to replace \(Ef \) with some form of risk. Today will discuss three choices.

1. \(R_\ell \) where \(\ell \) is Lipschitz. We covered this last time but will recap a little.
2. \(R_\ell(\alpha) := \text{Pr}[f(X) \neq Y] \); for this we’ll use finite classes and discuss shatter coefficients and VC dimension.
3. \(R_\gamma(f) = R_\ell \), where \(\ell_\gamma(z) := \max\{0, \min\{z/\gamma + 1, 1\}\} \) will lead to nice bounds for a number of methods, for instance boosting.

\(R_\ell \) recap

Last time we pointed out that bounded linear predictors \(F := \{x \mapsto \langle w, x \rangle : \|w\|_2 \leq W\} \) applied to bounded input values (\(\|x\|_2 \leq X \)) with a nondecreasing \(L \)-lipschitz loss (e.g., logistic loss is 1-Lipschitz) gives with probability \(\geq 1 - \delta \) for every \(f \in F \)

\[
R_\ell(f) \leq \hat{R}_\ell(f) + LWX / \sqrt{n} + 3(LWX + \ell(0)) \sqrt{\frac{2}{n} \ln \left(\frac{1}{\delta} \right)}.
\]

Note moreover that regularization implies a choice of \(\lambda \); namely, when \(\lambda > 0 \) and \(\ell \geq 0 \), minimization of

\[
f(w) := \hat{R}(f) + \lambda \|w\|_2^2 / 2
\]
implies that the ERM optimum w_λ satisfies
\[\lambda \|w_\lambda\|_2^2 / 2 \leq f(w_\lambda) \leq f(0) = R(0), \]
thus we can take $W := \sqrt{2R(0)/\lambda}$, and the earlier generalization terms with W become
\[\frac{LWX}{\sqrt{n}} = LX \sqrt{\frac{2R(0)}{\lambda n}}. \]
Consequently, statistical learning theory typically recommends $\lambda \geq 1/n^{1-\varepsilon}$ for even $\varepsilon \leq 1/2$ so that this bound goes to 0 quickly as n increases.

Remark. This is just a sufficient condition, not a necessary conditions.

R_z, VC dimension

Turning to R_z, we obtain a complexity term
\[\text{Rad}(\{(x, y) \mapsto 1[\text{sgn}(f(x)) \neq y] : f \in \mathcal{F}\})). \]
The following definitions and lemma show how we can simplify this.
Now consider the sign patterns that arise from a set of real-valued predictors, meaning
\[\text{sgn}(\mathcal{F}) := \{x \mapsto \text{sgn}(f(x)) : f \in \mathcal{F}\}, \]
\[\text{sgn}(U) := \{(\text{sgn}(v_1), \ldots, \text{sgn}(v_n)) : v \in U\}. \]
Define the **shatter coefficients** Sh and **VC dimension** VC as
\[\text{Sh}(\mathcal{F}|S) := \left| \text{sgn}(\mathcal{F}|S) \right|, \]
\[\text{Sh}(\mathcal{F}; n) := \max_{S \in \mathcal{S}} \text{Sh}(\mathcal{F}|S), \]
\[\text{VC}(\mathcal{F}) := \max\{i \in \mathbb{Z}^+ : \text{Sh}(\mathcal{F}; i) = 2^i\}. \]
The following two lemmas show how to use these concepts in controlling R_z.

Lemma.
\[\text{Rad}(\{(x, y) \mapsto 1[\text{sgn}(f(x)) \neq y] : f \in \mathcal{F}\}) \leq \frac{1}{2} \text{Rad}(\text{sgn}(\mathcal{F}|S)). \]

Proof. For each coordinate i, define a map $f_i(z) := 1[z = y_i]$ for $z \in \{-1, +1\}$, and then extend this to an affine function by interpolation. Each f_i is 1/2-Lipschitz, thus the Lipschitz composition lemma gives the result. \qed

Lemma (Sauer-Shelah, Vapnik-Chervonenkis?, Warren?). Define $V := \text{VC}(\mathcal{F})$ for convenience. Then
\[\text{Sh}(\mathcal{F}; n) \leq \begin{cases} 2^n & \text{when } n \leq V, \\ \left(\frac{e^n}{V}\right)^V & \text{otherwise}, \end{cases} \]
and in general $\text{Sh}(\mathcal{F}; n) \leq n^V + 1$.

Proof. Omitted; this is taught in lots of machine learning classes... \qed

Remark (historical). [future matus: dig this all up properly.]

1. Basically the definition of VC dimension appears in the Warren 1960s paper, who attributes it to an earlier paper by Shapiro. There is evidence Kolmogorov had a form of it decades earlier.
Putting these pieces together, we get the following.

Theorem ("VC theorem"). With probability $\geq 1 - \delta$, every $f \in \mathcal{F}$ satisfies

$$
\mathcal{R}_z(f) \leq \hat{\mathcal{R}}_z(f) + \text{Rad}(\text{sgn}(\mathcal{F})|_S) + 3\sqrt{\frac{2}{n} \ln \left(\frac{1}{\delta}\right)}
$$

where

$$
\text{Rad}(\text{sgn}(\mathcal{F})|_S) \leq \sqrt{\frac{8 \ln(\text{Sh}(\mathcal{F}|_S))}{n}}
$$

and

$$
\ln(\text{Sh}(\mathcal{F}|_S)) \leq \ln(\text{Sh}(\mathcal{F}; n)) \leq \text{VC}(\mathcal{F}) \ln(n+1).
$$

Remark (on optimization).

1. As discussed many times, there are trivial cases where minimizing $\hat{\mathcal{R}}_z$ is NP-hard.
2. Instead, it is common to minimize \mathcal{R}_ℓ. This can be related as follows.

Lemma. Suppose $\ell : \mathbb{R} \to \mathbb{R}_+$ is nondecreasing, and pick any $a \geq 0$ with $\ell(-a) > 0$. Then

$$
\mathcal{R}(\text{sgn}(f)) \leq \text{Pr}[f(X)Y \leq a] \leq \frac{\mathcal{R}_\ell(f)}{\ell(-a)}.
$$

Proof. By Markov’s inequality,

$$
\mathcal{R}_z(f) = \text{Pr}[\text{sgn}(f(X)) \neq Y] \leq \text{Pr}[Yf(X) \leq 0] \leq \text{Pr}[Yf(X) \leq a] = \text{Pr}[-Yf(X) \geq -a] \leq \text{Pr}[\ell(-Yf(X)) \geq \ell(-a)] \leq \frac{\mathbb{E}(\ell(-Yf(X)))}{\ell(-a)}.
$$

\square

Define

$$
t_{\gamma}(z) := \max\{0, \min\{1, 1 + z/\gamma\}\},
$$

$$
\mathcal{R}_{\gamma}(f) := \mathcal{R}_{t_{\gamma}}(f) = \mathbb{E}(t_{\gamma}(-Yf(X))).
$$

These losses have a number of nice properties and are useful when analyzing boosting. Let’s first get a few more Rademacher lemmas out of the way (not all of which we’ll need here).

Lemma.

1. $\text{Rad}(U) \geq 0$.
2. $\text{Rad}(cU + \{v\}) \leq |c|\text{Rad}(U)$.
3. $\text{Rad}(\text{conv}(U)) = \text{Rad}(U)$.
4. Let sets of vectors $(U_i)_{i \geq 1}$ be given with $\sup_{v \in U_i} \langle \sigma, v \rangle_n \geq 0$ for every $\sigma \in \{-1, +1\}^n$. Then

$$
\text{Rad}(\bigcup_i U_i) \leq \sum_i \text{Rad}(U_i).
$$

(For instance, it suffices to have $U_i = -U_i$, or $0 \in U_i$.)

Proof.

1. $\mathbb{E}_{\sigma} \sup_{v \in U} \langle \sigma, v \rangle_n \geq \sup_{v \in U} \mathbb{E}_{\sigma} \langle \sigma, v \rangle_n = 0$.

3
2. Use the Lipschitz composition lemma with the \(|e| \)-lipschitz maps \(f_i(z) := cz + v_0 \).

3. As has been used a number of times in the course, optimizing a linear function over a polytope is achieved at a corner:

\[
\mathbb{E}_\sigma \sup_{v \in \text{conv}(U)} \langle \sigma, v \rangle_n = \mathbb{E}_\sigma \sup_{k \geq 1} \sup_{v_1, \ldots, v_k \in U} \sup_{a_1, \ldots, a_k \in \Delta_k} \left\langle \sigma, \sum_j a_j v_j \right\rangle_n
\]
\[
= \mathbb{E}_\sigma \sup_{v \in U} \langle \sigma, v \rangle_n.
\]

4. Thanks to the condition on each \(U_i \),

\[
\mathbb{E}_\sigma \sup_{v \in \bigcup U_i} \langle \sigma, v \rangle_n = \mathbb{E}_\sigma \sup_{v \in U_i} \langle \sigma, v \rangle_n \leq \mathbb{E}_\sigma \sum_i \sup_{v \in U_i} \langle \sigma, v \rangle_n = \mathbb{E}_\sigma \sup_{v \in U_i} \langle \sigma, v \rangle_n.
\]

\[\square\]

Remark. In the case \(\text{Rad}(\cup U_i) \), some condition on \(U_i \) is needed; otherwise, any countable class \(U \) could be decomposed into singletons \(U_i \), and \(0 \leq \text{Rad}(U) \leq \sum \text{Rad}(U_i) = 0 \), which contradicts the existence of classes with cardinality 2 but positive Rademacher complexity.

These tools lead to the following control on \(R_\gamma \).

Theorem. Let some base class of functions \(\mathcal{H} \) be given, and suppose

\[
\mathcal{F} := W\text{conv}(\mathcal{H} \cup -\mathcal{H}) = \left\{ \sum_{i=1}^k \alpha_i h_i : k \in \mathbb{Z}_+, \alpha \in \mathbb{R}^k, \|\alpha\|_1 \leq W, h_1, \ldots, h_k \in \mathcal{H} \right\}
\]

With probability \(\geq 1 - \delta \), every \(f \in \mathcal{F} \) satisfies

\[
R_\alpha(f) \leq R_\gamma(f) \leq \hat{R}_\gamma(f) + \frac{2W}{\gamma} \text{Rad}(\mathcal{H} \cup -\mathcal{H}) + 3\sqrt{\frac{2}{n} \ln \left(\frac{1}{\delta} \right)}.
\]

Proof. Automatically, \(R_\alpha(f) \leq R_\gamma(f) \), and the rest follows from Rademacher rules above. (Note the deviations have scaling 1 since they are controlled before unwrapping the Rademacher complexity.) \[\square\]

Remark (on optimization, and the meaning of this bound).

- First note the most valuable setting which justifies this theorem. Note that this theorem gives an excellent bound whenever \(\hat{R}_\gamma(f) \) is small as well as \(W/\gamma \). This property is referred to as the existence of a small-complexity hypothesis which separates the data with a significant margin \(\gamma \). Under some conditions, boosting methods are known to output a classifier that satisfies this guarantee \[\text{matus: include citation \{ matus: include citation \}}; consequently, this bound was heralded as a major achievement in understanding the success of boosting, which for a long time seemed to enjoy impossibly good generalization performance.

- To make more sense of this, consider the following alternative bound on the complexity of the predictors output by boosting. Namely, after \(t \) rounds of boosting, the output predictor is a linear combination of at most \(t \) predictors. Though it will not be proved here \[\text{note to future matus: well I almost included it here.. \}}\), a brute-force VC dimension upper bound is linear in \(t \); therefore, the earlier bound miraculously seems to stay independent of \(t \). Of course, one must consider the method of choosing \(W \ldots \)

- Lastly, note that just as with \(R_\alpha \) and \(R_\ell \), it is easy to relate \(R_\gamma \) and \(R_\ell \); in particular, if \(\ell'(0) > 0 \),

\[
\ell_\gamma(z) \leq \frac{1}{\min\{\ell(0), \ell'(0)\gamma\}} \ell(z).
\]

This follows since \(\ell(z) \geq 0 \) and, setting \(r := \min\{\ell(0), \ell'(0)\gamma\} \) for convenience,

\[
\ell(z) \geq \ell(0) + \ell'(0) = r \left(\frac{\ell(0)}{r} + \frac{\ell'(0)}{r} z \right) \geq r \left(1 + \frac{z}{\gamma} \right).
\]