Recap: VC dimension

This

Recall definitions:

\[\text{sgn}(U) := \bigg\{ \text{sgn}(u_1), \ldots, \text{sgn}(u_n) \bigg\} : U \subseteq \mathbb{F}^n, \]

\[\text{Sh}(\mathcal{F}; \text{sgn}) := \left\| \text{sgn}(\mathcal{F}) \right\|, \]

\[\text{Sh}(\mathcal{F}; n) := \max \sup_{S \subseteq \mathcal{F}} \text{Sh}(\mathcal{F}; \text{sgn}) \quad \text{in worst-case...} \]

\[\text{VC}(\mathcal{F}) := \max \left\{ \sum_{i \in \mathbb{Z}_0} \text{Sh}(\mathcal{F}; i) = 2^i \right\}. \]

\[\text{emp} \text{ (Sauer-Shelah)} \text{ set } V \subseteq \text{VC}(\mathcal{F}). \]

\[\text{Sh}(\mathcal{F}; n) \leq \left(\frac{2^n}{|\mathcal{F}|} \right) \text{ n} \in V \text{ o.w.} \]

\[\text{Sh}(\mathcal{F}; n) \leq n^\text{th}. \]

Theorem ("VC theorem"): \(\text{w/ pr > 1-\epsilon, any } \mathcal{F} \text{ satisfies } \)

\[R_2(\mathcal{F}) \leq R_2(\mathcal{F}) + \frac{1}{\epsilon} \text{Rad}(\text{sgn}(\mathcal{F})) + 3 \sqrt{\frac{\ln(\frac{1}{\epsilon})}{2n}} \]

where \(R_2(\mathcal{F}) = \text{Pr}[ext{Bartlett}(V, \mathcal{F})] \text{ and } \)

\[\text{Rad}(\text{sgn}(\mathcal{F})) \leq \sqrt{2n \ln(\frac{1}{\epsilon} \text{Sh}(\mathcal{F}; \text{sgn}))}, \]

\[\ln(\text{Sh}(\mathcal{F}; \text{sgn})) \leq \ln(\text{Sh}(\mathcal{F}; n)) \leq \text{VC}(\mathcal{F})(n+1). \]
Theorem. Set $f : \{ x \mapsto \text{sgn}(\langle w, x \rangle - b) : w \in \mathbb{R}^d, b \in \mathbb{R} \}$.

Then $\text{VC}(f) = d+1$.

Remarks.

- **Convention to include offset.** Homework will (?) discuss removing/adding.

- By Sauer–Shelah, $\text{Sh}(\mathbb{R}; n) \leq \frac{2^n}{n!} + 1$.

- Anthony–Bartlett chapter 3 gives an exact computation (an equality!) for $\text{Sh}(\mathbb{R}; n)$.

- Let's compare to a Rademacher complexity.

 $\text{Rad}(\text{sgn}(\cdot), \mathbb{R}) \leq \sqrt{\frac{d \ln(2n)}{2n \cdot d \cdot \ln(n+1)}}$.

 $\text{Rad}(\{ x \mapsto \langle w, x \rangle : w \in \mathbb{R}^d \}, \| \cdot \|_2) \leq \frac{\sqrt{d \ln n}}{\| [e_1, \ldots, e_n] \|_2}$.

- VC lower bound will use standard basis vectors, thus $\| [e_1, \ldots, e_n] \|_2 = \sqrt{n}$.

- One is scale-sensitive, other is not.

- One gives rise to standard l_2-reg, other does not!

 (β for usual sets do we have good complexity measures & regularization?)
Proof.

Lower Bound. \(\text{VC}(\mathcal{F}) \geq d + 1 \).

Suffices to show \(\exists S := \{ e_1, \ldots, e_d \} \) with \(\text{Sh}(\mathcal{F}_S) = 2^{d+1} \).

Pick \(S = \{ e_1, \ldots, e_d \} \cup \{ 0, \ldots, 0 \} \).

Given any \(P \subseteq S \), consider predictor \(x \mapsto \text{sgn}(\langle w, x \rangle - b) \) where corresponding parameters \((w, b)\) satisfy:

\[
\begin{align*}
 w &:= 2 \cdot \mathbb{1}[e_i \in P] - 1, \\
 b &:= \frac{1}{2} - \mathbb{1}[0 \in P].
\end{align*}
\]

Then:

\[
\begin{align*}
 \text{sgn}(\langle w, e_i \rangle - b) &= \text{sgn}(2 \cdot \mathbb{1}[e_i \in P] - 1 - b) = 2 \cdot \mathbb{1}[e_i \in P] - 1, \\
 \text{sgn}(\langle w, 0 \rangle - b) &= \text{sgn}(1 - b) = 2 \cdot \mathbb{1}[0 \in P] - 1.
\end{align*}
\]

Hence, \((w, b)\) achieves labelling \(P \).

Upper bound. \(\text{VC}(\mathcal{F}) \leq d + 2 \).

Consider any \(S \subseteq \mathbb{R}^d \) with \(|S| = d + 2 \).

By Radon lemma (proved next), \(\exists P, N \).

exists partition of \(S \) into nonempty \(P, N \) with \(\text{conv}(P) \cap \text{conv}(N) \neq \emptyset \).

Therefore, any linear predictor labelling \(P \) as positive

must also label at least one point of \(N \) as positive.

\(S \) has arbitrary \(\Rightarrow \) \(\text{Sh}(\mathcal{F}_{d+2}) < 2^{d+2} \Rightarrow \text{VC}(\mathcal{F}) < d + 2 \).
Theorem ("Radon's lemma").

Given \(S \subseteq \mathbb{R}^{d+2} \) with \(|S| = d+2 \),

exists partition into nonempty subsets \(P, N \) with \(\text{conv}(P) \cap \text{conv}(N) \neq \emptyset \).

Proof:

Let \(S := \{ x_1, \ldots, x_{d+2} \} \) be given, define \(u_i := x_i - x_{d+2} \).

\((u_1, \ldots, u_{d+1}) \) must be linearly dependent.

Existence:

\(\sum_{i=1}^{d+3} a_i x_i = 0 \) \(\forall a_i \neq 0 \) (i.e., \(a_i = 1 \))

\[\sum_{i=1}^{d+3} a_i x_i = 0 \]

\[\Rightarrow \quad x_i - x_{d+2} = \sum_{i=d+1}^{d+3} a_i (x_i - x_{d+2}) \]

\[\Rightarrow \quad 0 = \sum_{i=d+1}^{d+3} a_i x_i \]

Not all \(P_i = 0 \), and \(\sum b_i = 0 \).

Set \(P := \{ x_i : b_i > 0 \} \), \(N := \{ x_i : b_i < 0 \} \).

Note neither is empty.

Set \(b := \sum_{i \in P} b_i > 0 = -\sum_{i \in N} b_i \).

Since \(0 = \sum b_i x_i = \sum_{i \in P} b_i x_i + \sum_{i \in N} b_i x_i \), then \(\frac{0}{b} = \sum_{i \in P} \frac{b_i}{b} x_i + \sum_{i \in N} \frac{b_i}{b} x_i \)

\[\Rightarrow \quad \sum_{i \in P} \frac{b_i}{b} x_i = \sum_{i \in N} \frac{b_i}{b} x_i = 0 \]

Thus \(\exists \in \text{conv}(P) \cap \text{conv}(N) \).
Consider iterating previous construction:

A neural network where nodes have activation $\text{sgn}(\cdot)$.

To study this, consider a more elaborate object than simply the output.

Definition. Given a sample of size n and an LTF network with m nodes, define a $m \times m$ activation matrix $A := \{a_{ij}\}$, where $a_{ij} = \text{sgn}(c)$ for node i on example j.

Let $\text{Act}(\mathcal{F})$ denote the set of all activation matrices achieved with LTF architecture/loss \mathcal{F} on sample S.

Remark. Since the last column of A is the labelling,

$|\text{Act}(\mathcal{F})| \geq \text{sh}(n, m)$.

- $\text{Act}(\mathcal{F})$ tells us more and seems a nice complexity measure on its own. But we don't get an estimate of it from a single training algorithm run (in contrast with say, Lipschitz constant).

- We can do this for ReLU too! Now $A_{ij} := 1$ if node j is active on example i.
Theorem. Consider LTF networks \mathcal{F} with finite parameters (weight coordinates & biases). Then $\forall n \geq 1$

$$Sh(\mathcal{F}; n) \leq \max_{S, 1 \leq i \leq n} |Act(\mathcal{F}; S)| \leq (n+1)^p,$$

when $p > 12,$ $VC(\mathcal{F}) \leq 6 \text{ ph}(p).$

Proof. Topologically sort nodes, let p_1, \ldots, p_m be the number of parameters per each.

We'll construct partitions W_1, U_1, \ldots, U_m of the weight space (in detail, U_i partitions weight space of nodes S_i)

so that activation pattern of nodes $W_1 \cup \cdots \cup U_i$ is fixed within each partition cell.

For convenience define $S_0 = \emptyset, S_1 \in \mathcal{I}.$

By induction it'll be shown that $|S_i| \leq (n+1)^{\frac{i-1}{12}}.$

Since $|Act(\mathcal{F}; S)| \leq \sum_{S_m}$, this gives first bound.

Base case. $|S_0| = 1 = (n+1)^0.$

Inductive step. Fix any cell C in S_i; for those choices of weights in layers S_i, the activation pattern is fixed. Therefore node i_l receives a fixed input (which are a combination of original input coordinates & intermediate node outputs). By VC-dim of LTF 4.Sauer-Shelah, we can further refine C into $(n+1)^{0.12}$ pieces which activation of nodes is fixed.

Doing this for each $C \in S_i$, we have $|S_i| \leq 15 \cdot 15 \cdot \ldots \cdot 15 \leq (n+1)^{0.12}.$
Proof continued (of LTF net VC dim).

It remains to prove the VC dimension from $\mathcal{S}(\mathcal{F}, n)$.

Note

\[VC(\mathcal{F}) < n \]

\[\iff \forall i \leq n \quad \mathcal{S}(\mathcal{F}; i) < 2^i \]

\[\iff \forall i \leq n \quad (i+1) p < 2^i \]

\[\iff \forall i \leq n \quad (i+1) p \ln(i+1) < i \ln(2) \]

\[\iff \forall i \leq n \quad p < \frac{i \ln(2)}{\ln(i+1)} \]

\[\iff p < \frac{n \ln(2)}{\ln(n+1)} \]

If $n = 6 \rho \ln(\rho)$,

\[\frac{n \ln(2)}{\ln(n+1)} = \frac{n \ln(2)}{\ln(2n)} = \frac{6 \rho \ln(\rho) \ln(2)}{\ln(2n) + \ln(\rho) + \ln(\rho)} \]

\[\geq \frac{6 \rho \ln(\rho) \ln(2)}{3 \ln(\rho)} > p \]

Remark: Had to do "$\forall i \leq n$"!

VC dim is really a "sup"; a weird function class which is 0 for even-sized data and 1 for even-sized odd sizes still has infinite VC.
Remark.

* lower bound \(\Omega(p \ln (\frac{\#K}{m}) \)

(Anthony - Artelt ch6; no proof).

But these lower bounds are specific network architectures.

\[\Rightarrow \text{really nots interpolation hard!} \]

* Other bounds

<table>
<thead>
<tr>
<th>arbitrary concave concave</th>
<th>VC</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELU</td>
<td>(\tilde{O}(\Psi \ln(\Psi/c)))</td>
</tr>
<tr>
<td>sigmoid</td>
<td>(\tilde{O}(p^2 m^2)) (also (\Omega(pL)))</td>
</tr>
</tbody>
</table>

But lower bounds, again, are deceiving fixed architecture!

Also: bit complex thus a work in!