
ML Theory — Homework 0

your NetID here

Version 1

Instructions.

• Everyone must submit an individual write-up.

• This is a calibration homework; please work alone and don’t hunt for solutions (except in problem 2).

• Homework is due Monday, September 3, at 3:30pm; no late homework accepted.

• Please consider using the provided LATEX file as a template.
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1. (Ordinary least squares and the SVD.)

(a) Let A ∈ Rd×k be orthonormal with k < d, let S denote the span of its columns, and let B ∈ Rd×(d−k)

be any orthonormal matrix with column span S⊥. Show via direct calculation that every x ∈ Rd

satisfies
AA>x+BB>x = x.

(b) Show by direct calculation that every pair x ∈ Rd and w ∈ Rk satisfy

‖x−AA>x‖ ≤ ‖x−Aw‖.

Remark. Consequently, the orthogonal projection operation x 7→ A>x provides solutions to
min

{
‖x−Aw‖ : w ∈ Rk

}
.

(c) Now let C ∈ Rd×k with k < d be a general matrix (not necessarily orthonormal), and let’s focus
on the ordinary least squares problem introduced in the preceding remark, namely

min
w∈Rk

‖x− Cw‖2.

By differentiating and setting to zero, show that satisfying the normal equations

C>Cw = C>x

is necessary and sufficient for a vector w ∈ Rk to be a critical point.

Remark/bonus. If you feel like it, establish that the Hessian is positive semi-definite, whereby
the normal equations are equivalent to global optimality.

Remark. When C is orthonormal, C>C = I, meaning the orthogonal projection w = C>x from
earlier parts satisfies the normal equations and thus can be defined via minimization.

(d) With an orthonormal matrix A, we had the easy least squares solution A>x; let’s see if we can get
something similar in the general case of C ∈ Rd×k with k < d as before.

Let C = USV > denote the SVD of C; a sufficient definition for the purposes of this problem is as
follows. The matrices U ∈ Rd×d and V ∈ Rk×k are orthornomal, whereas S ∈ Rd×k is zero off the
diagonal and along the diagonal has the (nonnegative) reals (the singular values) appearing in
nonincreasing order; the number of positive singular values in S equals the rank of the matrix C.
This decomposition is not unique in general, however it always exists.

Define the pseudoinverse S† ∈ Rk×d of S by transposing S and inverting the positive entries, and
the pseudoinverse C† of C as C† = V S†U>.

Show firstly that C†x is globally optimal for the least squares problem above (take the earlier
global optimality remark for granted if you didn’t prove it). Note. Since k < d, the pseudoinverse
is not an inverse; make sure your derivation does not imply CC† = I!

Secondly, show that C† = C> when C is orthonormal, whereby we’ve recovered the earlier
reasoning.

Note. There is no need to form a Lagrangian (or do any other complicated thing).

Solution.

(Your solution here.)
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2. (Random walks on the integers.)

Consider a sequence of iid random variables (X1, . . . , Xn) where Pr[Xi = +1] = Pr[Xi = −1] = 1/2 for
all i ∈ {1, . . . , n}, and additionally let Sj :=

∑
i≤j Xi denote their sum.

Remark. While solving homework problems in this class generally should not involve any side references,
this problem is partly asking you to look things up! The reason is to build intuition for some of the
essential statistical phenomena; it’s okay if this is your first exposure.

(a) Use Chebyshev’s inequality to fill in the blanks in the following: for any δ ∈ (0, 1],

Pr
[
|Sn| < �

]
≥ 1− δ;

show your work and give an explicit expression (as small as possible with Chebyshev) for �.
Remark. Statements of this type are common in learning theory, and are stated as “with
probability at least 1− δ, |Sn| < �”.

(b) Now use Hoeffding’s inequality to derive a tighter form of the preceding. Please cite your (favorite)
resource for Hoeffding.

Remark. 1− δ is the “confidence”; we want the bound to scale very mildly with 1/δ. The form
we get out of Hoeffding will be very useful.

(c) Look up and restate in your own words the law of the iterated logarithm (LIL) (give your citation,
not to wikipedia). You can make your statement mathematical, or you can use plain english, it’s
up to you.

After that, say something about the random walk Sn which is revealed by the LIL but not captured
in the preceding bounds. Ideally, state it mathematically or with a picture.

(d) Provide a plot which demonstrates the above behavior. Specifically, choose a large N (220

should suffice to see LIL), and plot the random walk (S1, S2, S3, . . . , SN ), along with some curves
representing the above bounds. Feel free to be creative, this is homework 0 after all. . .

Solution.

(Your solution here.)
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3. (Counting oscillations.)

Given a set of reals S ⊆ R, let CC(S) denote the connected components of S (the sets here will be
well-behaved, so don’t stress the definition too much; it suffices for our purposes to say C is a connected
component of S if (a) C ⊆ S, (b) C is a interval, (c) C is not strictly contained within any other interval
which is also a subset of S). For example,

CC

({
x ∈ R : x2 − 1 = 0

})
=
{
{−1}, {+1}

}
, CC (R) = {R}.

Given any continuous function f , define

Osc(f) := sup
a,b∈R

∣∣∣∣CC
({
x ∈ R : f(x) = ax+ b

})∣∣∣∣ ;
roughly speaking, Osc(f) counts the number of times f can intersect any affine function, and is therefore
a way to measure oscillations. For example,

Osc(x 7→ x2 − 1) = 2, Osc(x 7→ x− 1) = 1.

(a) Show that any polynomial f of degree k has Osc(f) ≤ max{1, k}.
(b) Show that g(x) = x2 − cos(x) has Osc(g) = 2.

(c) As an immediate consequence of the previous parts: show that there exist f, g with Osc(f) = 2
and Osc(g) = 2, but Osc(f + g) =∞.

(d) Show that if f has Osc(f) <∞, then there exists x with |f(x)− sin(x)| ≥ 1.

(e) Show that for every ε > 0, there exists g with Osc(g) = ∞ and f with Osc(f) < ∞ but
supx∈R |g(x)− f(x)| ≤ ε.
Remark. This isn’t hard, but together with the preceding part it aims to stress that oscillation
counting isn’t enough when separating functions.

Solution.

(Your solution here.)
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