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L. (Miseellaneous short guestions.)

Provide complete proofs, bt tey to Bod short solutions.

[a) [Justifying uniform norm: upper bound. ) Suppose £ s L-lipschite, and g 8 a probability
messure supported on [0, 14 = {-1,+1}. Show

Rylf) - Relyg) = f«"[—yf[:#] il wh — J[rl":—J_r.-izﬁlJ-ln[r-y] < L|F = ol

(b (Justifying uniform norm:  lower bound.) Given any two continoons functions [ oand g
cotstrieet an L-lipschitz loss £ amd a probability measure goso that the previons part is tight: tlhat
is_

Rl 1 — Relah = LIS — gl

Remark: together, we've shown why we aim for uniform approximation (it ioplies bounds for all
IMEEEIres| .

(c) [Stone-Welerstrass with cos) Use the Stone-Welerstrass theovem, as stated in leeture 5 (do
not use another source], te prove that for every continuous function f: BY — R and ¢ = 0, theee
exksts g £ apan Mew | with || — gl < e (Hint: refresh yourself on some trig bdentitios. )

(il) [(Deep, narvow networks.) Let oo(z) i= max{(. £} denote the ReLU, and for convenbence lot
oy denote the coovdinate-wise versbon of appropriate dimension (Lo o (¢) outpiats a vector of the
same dimension as v, whatever it happens to be).

Suppose | o [0, I|'r —+ R can be written as a network with a single ReLU layer, specifically
flz) = A A1z + Iy ) wheve Ay £ B~ and As € BYT Copstruct a network with « ReLU
Tayers and wideh o + 3 which also {exactly) computes .

Remark: this reveals some convenient properties of Rells.

(e} (Uniform approximation with ReLlL} Again define o (2] = max{i), =}, Construct & €
H]J:m['Hv,l] which satisfies the conditions of Theorem 19 from Lecture 5 (and provide explicit
verifieation of these conditions).

Remark: consequently, Theorem 1% may be applied, amd tlhos shallow RellD networks fit
continuos fnctions,

Solution.

| ¥orr sedution here. |

L. (Miscellaneous short guestions. )
Provide complete proofs, but tey to fond shot selutions, Note also this vefined for neural network
niotation specifying input dimension:

Hox = {R*3 s e’z —BER : acRLbER].
[a) [Justifying uniform norm: upper bound.) Soppose £ s L-lipschitz, and g 8 a probability
measire supported on [, I|'l % {—1,+1}. Show

Relf) = Raig) = [ ei-uttenante )~ [ d-vatenante. < 1 - ol

(b (Justifying uniform norm: lower bound.) Given any two continoons fonctions [ oand g
constret an L-lpschitz loss © amd a probability measore pgoso that the previows part s tight: that
18,

Rolf) - Relgh = LIS — glla-

Remark: together, we've shown why we aim for uniform approsimation (it ioaplies bounds for all
]II.!:il.'!IJ]\"’:i].

() [Stone-Welerstrass with cos ) Use the Stone-Welerstrass theorem, as stated in leetuve 5 (do
not use another source), to prove that for every continuous function [ : EY — B and ¢ = 0, there
exbats g € span{ Mo, o) with || F — 9], < ¢ (Hint: refresh vouwrself on some trig identities. )

() {Deep, narrow networks.) Let o,0z) i= max{0. =} denote the ReLU, and for convenbence let
oy denote the coovdinate-wise vershon of appropriate dinsension {Le., o (¢) outpits a vector of the
same dimension as o whatever it happens to he).

Suppose [ [0, 1|'r —+ R can be written a8 a network with a single ReLU Layer. specifically
flz) = AzariArx + By where 4 £ B Az € B Construct a network with w ReLU
layers amd width o + 3 which also (exactly) compates f.

Remark: this reveals some convenient properties of ReL s

(e} [Uniform approximation with ReLUL) Again define #.02) = max{l, =}, Construct & £
apan| W=, 1) which satisfies the conditions of Theorem L9 from Lecture 5 (and provide explicit
verification of these conditions).

Remark: consequently, Theorem L% may be applied, and tlhuos shallow RelU networks fit
continuomes fnetions,

Solutbon.

{ Yaurr sefution here. |
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1. 2-layer networks fit continuous functions. )
Recall from elass the definition

Hy = {;—muu.x) +bhiasRE b n}.

Using Stone-Welerstrass, we proved we can approximate continnous functions with span{H,..}. It was
then claimed that the rest of the proof 8 “essentially unbvariate”™; this ecercise completes that proof.

e more plece of notation i3 needed. Sav that o : B — R iz sgmoidel when it B nondecreasing.
oontinomes, and
lim afz) =1, lim ez} = 1.
=S vl

[a) The first missing plece = to agsert that we really are left with a unbvariate problem. Namely, prove
the following.

Lot o : B — R oamd ¢ : B — R be given. Suppose that for any interval [r 8 and any ¢ = 0,
we can always find k€ span{H.) so that

sip { [e{x) — gix)| : x & [r'. -1||} =T

(In words: we ave a way to approsimate ¢ along [r, 5] with spani{Mz.) Then for any
£ =0 and any g € Hy but now g : B — B, we can still choose § € span|H.) with

[1f— gl = e
(b} Let sigmoidal o : B — B, target ereor v = 0, interval [r s and a function o : B — B be given
with o Lipachitz continuous along [, 5], Show that there exists & £ span( M. ) satisfying

aup { i) — yix]| 2 £ [r, x]|} =T

Hints. (a] Note that for large A, o{Mx) = Lz = 0; (b} consider drawing a pleture for the
simpler caze of nonlnereasing b, with special attention to the meaning of Lipschitz conthomity.

() Prove that cxp and oos are Lipschitz eontivnons along any bownded interval. {Yop. that's really
all vou need to do for this part.)

Though you don't need to write anvthing about it kere, T orge you to verlfy that the preceding stops
can be combined witl the material in lecture to complete the proof.

Solution.

| Yo sedution here. |

1. (2-layer networks fit continuous functions. )
Recall the mefined definition

Hou = {:. ol la, ) + b as RY b R}».

Using Stone-Welesstrass, we proved we can approximate continous functions with span{ M., g It was
then claimed that the rest of the proof 8 “essentially uonbvariate”™; this exercise completes that proof.

One more plece of notation 15 needed. Sav that o 0 B — R iz sgmoidel when it & nondecreasing,
contimons, and
lim afz) =1, lim efz) = 1.
a0 vt

[a) The first missing phece = to assert that we roally are left with a univariate problom. Namely, prove
the following.

Let o : B — B oamd ¢ : B — R be given. Suppose that for any interval [ g and any ¢ = 0,
we can always find i € span{ M, ) 2o that

sip 4 [ilx] — dix)| : & [r'. -1||} =T

(I words: we have a way to approdimate ¢ along ¢, 5] with span(Meq1).0 Then for any
£ = 0 and any g < Hag but now g @ B — B we can still chonse [ € spanjHqq) with
1F—allu = e
(b} Lot sigmoidal e : B — B, target ereor v = 0, interval [r 8] and a function o : B — R be given
with o Lipachite continuows along [r. . Show that there exista fo  spanHa ) satbsfying

aup { [hix) — gix]| s x £ [r, x]l} =T

Hints. (a] Note that for large M, a(Mx) = D[z = 0); (b) consider drawing a picture for the
simpler caze of nondnereasing . with special attention to the meaning of Lipschitz conthmity.

(e} Prove that exp and cos are Lipschitz continnous alowg any bounded interval. {Yup, that's veally
all vou need to do for this part.)

Though you don't need to write anvthing about it here, T orge yvou to verify that the preceding steps
can be combined with the material in lecture to complete the proof.

Solution.

| Vaurr sofution here. |
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G [ Monomlials and uniform approximation via derivatives.)

This probdem will provide an approach to uniform approsimation that aveids Stone-Welsrsteaas; do
not e Stone-Welersteass or Weleratvass or anything similar in any step of the proof!

The problem will comsider only the univariate case, but essentially the same proof works in the
mutltivariate case (a8 diseussed at the end).

For convenience, for any activation o, define G = span|H, ). Here are some useful analysis facts for
this problem:

a Continuois finetions ave uniformly eontinous and bounded {moreover attaining thelr supren)/ infima)
oy conpact sets.

& Tozay a function | is £ means all devivatives exist (and ave continwous). If o s O™, then so is
every f € Ga.

Throughout this problem, suppose o 18 O and o™ 20, measing the o™ dorlvative iz wot identically
the zero function for every nonnegative integer n.

fa) (Closed under a single devivative.) Let f £ Go and any s € B and any ¢ = 0 be given, and
define hir) i= rf (we) (the mapping £ — Hacf{re)|r—]. Prove that there exists g € G so that
e —gle = e.
Hint. Consider the definithon of 4 five) |- o terms of limits, am] ace how it Interacts with an
exact | ntegral remainder] Tavlor expansion. Via the analysiz facts above, you can conveniently
bowiad the remainder term. Use this to construct an appropriate g € G,. and prove that it works,

(b (Closed under devivatives.) For every peal w £ B and positive nteger o, define
Bpelx) := 2" ™ we) = #forra(re)]mp-

Show that for any (v, €,n), there exdsts ¢ £ G, with |lg — f .l < e

Hint. Combine the previows part with an induction on s amd some caveful reasoning about
approimations. Be wary of cireularitv. .

[ Monomials) Prove that for any positive integer noand real ¢ = 0. theve exists g € G so that
g — gl = ¢ where g, () = 2",

Hint. Use the previous part. and double check the conditions on o,

{c

MNow that we have monomials, we can wse the Welerstrass Theorem (whicl las a simple constructive
preaf ). Also, the proof above goes throngh no problem in the multivariate esse (now wse o — o {w, 2} ).
amd take diffevent partial devivatives to get various moenomials|.

Solution.

| ¥orr sedution here. |

G [Monomials and uniform approximation via derbvatives.)

This prollem will provide an approach to aniform approsimation that aveids Stone-Welerstraas; do
not e Stone-Welerstrass or Welerstrass or anything similar in any step of the proof!

The problem will consider only the univariate case, but essentially the same proof works in the
mutltivariate case (a8 diseussed at the ed).

For convenicnce. for any activation o, define G, = spand M, ). Hene are some useful analvals facts for
this problem:

&« Continuows fanetions ave unifermly contimaons and bounded (moreover attaining thedr suprensinfima)
o conkpact sets.

& Tozay a function f s £ means all derivatives exist (and ave continwous), If & s O, then so is
every f € Ga.

Throughout this problem, suppose o 8 O and & £ 0, meaning the o™ dorlvative is not identically
the zero function for every nonnegative integer n.

fa) (Closed under a single devivative) Let £ £ G, and any w € B and any ¢ = 0 be given, and
define file) = e f [wr) (the mapping # — 3o f{rr) | ). Prove that there exiats g € G- a0 that
[Me = gla = e.
Hint. Consider the definithon of & flve |- o terms of lmits, amd see bow it Interacts with an
exgact (inbegral remabnder] Tavlor expansion. Via the analyais facts above, you can convenietly
Bowid the vematader term. Use this to construct an appropriate g € G,. and prove that it works,
(b (Closed wnder derdvatives. ) For every real @b £ B amd pesithve integer @, define

an

Fwalre = i)

Anwlx] 7= 2 0™ e — B = L
Show that for any (o, b« i), theve exists g & Gy with g — hnws|| < €.

Hint., Combdme the previows part sith an deetion on s amd some caveful reasoning albout
approximations. Be wary of clreularitv. .

[Monomials.) Prove that for any positive integer noand veal ¢ = 00 theve exists g € G, 5o that
|l — e < ¢ where (2] = 2.

Hint. Use the previous part, and double clheck the conditions on e,

{c

Now that we have monomiala, we san wse the Welerstrass Theovemn (whicl has a simple constructive
proaf . Alse, the proof absove goes theeugh no problem n the multivariate case (now use & — o, 2p—.
amil take diffcrent partial devivatives to get various monomials).

Solution.

| Vaur sofution here. |




