# $\operatorname{ML}$ Theory — Homework 2

## your NetID here

## Version 3

**Instructions.** (Same as homework 1.)

- Everyone must submit an individual write-up.
- You may discuss with up to 3 other people. State their NetIDs clearly on the first page. Outside of office hours, you should not discuss with anyone but these three.
- Homework is due Wednesday, November 28, at 3:00pm; no late homework accepted.
- $\bullet$  Please consider using the provided LATEX file as a template.

#### 1. (Miscellaneous short questions.)

(a) Let  $\ell : \mathbb{R} \to \mathbb{R}_{\geq 0}$  be a convex loss, and fix any distribution on (x, y); consider our familiar setting of risk minimization for linear functions, meaning  $f(w) := \mathbb{E}\ell(\langle w, -xy \rangle)$ . Show that given a random draw (x, y) and any  $g \in \partial \ell(\langle w, -xy \rangle)$ , then  $\mathbb{E}(-xyg) \in \partial f(w)$ .

**Remark:** this problem justifies the choice of stochastic gradient descent used in practice.

**Recall:** the subgradient  $\partial h$  is defined as

$$\partial h(w) = \left\{ s \in \mathbb{R}^d : \forall v \in \mathbb{R}^d \cdot h(v) \ge h(w) + \langle s, v - w \rangle \right\}.$$

(b) Suppose  $\Phi: \mathbb{R}^d \to \mathbb{R}$  is  $\lambda$ -strongly-convex ( $\lambda$ -sc) and differentiable, and define the *Bregman divergence* 

$$D_{\Phi}(x,y) := \Phi(x) - \left(\Phi(y) + \left\langle \nabla \Phi(y), x - y \right\rangle \right).$$

Prove that  $D_{\Phi}$  is  $\lambda$ -sc in its first argument.

(**Remark.** What about the second argument? Does a weaker property hold?)

(c) Once again let  $\Phi: \mathbb{R}^d \to \mathbb{R}$  be  $\lambda$ -sc. Recall the definition of Fenchel conjugate  $\Phi^*(s) := \sup_{x \in \mathbb{R}^d} \langle x, s \rangle - \Phi(s)$ .

The update rule of mirror descent may be written

$$w' := \underset{v}{\operatorname{arg\,min}} \eta \left\langle \nabla f(w), v \right\rangle + D_{\Phi}(v, w).$$

Prove this is equivalent to

$$w'' := \nabla \Phi^* \left( \Phi(w) - \eta \nabla f(w) \right).$$

**Hint:** since  $\Phi$  is strongly convex, then  $(\nabla \Phi)^{-1}$  exists and is equal to  $\nabla \Phi^*$  (you may use this without proof).

- (d) Suppose  $Q \in \mathbb{R}^{d \times d}$  is symmetric positive definite, let  $b \in \mathbb{R}^d$  be arbitary, and define  $f(x) := \frac{1}{2}x^\top Qx + b^\top x$ . Using direct computation (and not the preceding inverse gradient gradient fact), derive the Fenchel conjugate  $f^*$ , and prove it is correct.
- (e) Now suppose  $Q \in \mathbb{R}^{d \times d}$  is merely symmetric positive *semi-definite* (it may fail to have an inverse),  $b \in \mathbb{R}^d$  is again arbitrary, and define  $f(x) := \frac{1}{2}x^\top Qx + b^\top x$ . Derive the Fenchel conjugate  $f^*$ , and prove it is correct.
- (f) Freedman's inequality (Bernstein's inequality for martingales) implies: given martingale difference sequence  $(Z_i)_{i=1}^n$  with  $|Z_i| \leq b$  and  $\sum_i \mathbb{E}(Z_i^2|Z_{\leq i}) \leq v$ , then with probability at least  $1 \delta$ ,

$$\sum_{i} Z_{i} \leq \sqrt{2v \ln(1/\delta)} + \frac{b \ln(1/\delta)}{3}.$$

Consider the setting of the theorem in Lecture 15, but additionally  $\mathbb{E}(g_i^2|w_{i-1}) \leq \sigma^2$ , and that for any given  $w_{i-1}$  it is possible to obtain an arbitrary number of mutually conditionally independent stochastic gradients  $g_i$  with all stated properties.

Use all these assumptions together with the above version of Freedman's inequality to provide a refinement of the theorem in Lecture 15.

(g) Consider the setting of the previous part, but suppose a minibatch of size b is used (b conditionally independent stochastic gradients are averaged together for each step). State the optimal values of step size  $\eta$  and batch size b by optimizing the right hand side of the previous bound.

#### Solution.

## 2. (Dual norms.)

Recall that for any norm  $\|\cdot\|$ , there is also a dual norm

$$||s||_* = \sup \{ \langle s, v \rangle : ||v|| \le 1 \}.$$

You may assume this is a valid norm without proof. For this problem, suppose vectors lie in  $\mathbb{R}^d$ , but norm duality works beyond that.

**Note:** in all parts of this problem, assume a general norm and dual-norm pair! Do not assume  $l_2$  norm!

- (a) Prove  $|\langle s, v \rangle| \leq ||v|| \cdot ||s||_*$  (a generalized Hölder inequality).
- (b) Suppose  $f: \mathbb{R}^d \to \mathbb{R}$  has  $\beta$ -Lipschitz gradients wrt  $\|\cdot\|$ , meaning

$$\|\nabla f(x) - \nabla f(y)\|_* \le \beta \|x - y\|.$$

(Gradients live in dual space, get dual norm.) Prove

$$\left| f(x+v) - f(x) - \left\langle \nabla f(x), v \right\rangle \right| \le \frac{\beta}{2} ||v||^2.$$

(Major hint: repeat the integral calculation for  $\|\cdot\|_2$  from lecture 11.)

(c) Suppose f is  $\beta$ -smooth wrt  $\|\cdot\|$  as above, and suppose the gradient descent iteration is replaced with the steps

$$v := \arg\max\left\{\left\langle \nabla f(w), v\right\rangle : \|v\| \le 1\right\}, \qquad w' := w - v\|\nabla f(w)\|_*/\beta. \tag{1}$$

Show that

$$f(w') \le f(w) - \|\nabla f(w)\|_*^2 / (2\beta).$$

(d) Suppose that f is  $\lambda$  strongly convex wrt  $\|\cdot\|$ , meaning

$$f(w+v) \ge f(w) + \langle \nabla f(w), v \rangle + \frac{\lambda}{2} ||v||^2.$$

Prove that a minimizer  $\bar{w}$  exists, is unique, and for any w

$$f(\bar{w}) \ge f(w) - \frac{\|\nabla f(w)\|_*^2}{2\lambda}.$$

(You may assume without proof that convex functions over  $\mathbb{R}^d$  are continuous, and that continuous functions over  $\mathbb{R}^d$  attain minima and maxima over closed bounded sets.)

(e) Suppose that f is not only  $\beta$ -smooth wrt  $\|\cdot\|$  as above, but moreover it is  $\lambda$  strongly convex wrt  $\|\cdot\|$ . Suppose  $(w_i)_{i < t}$  are given by the generalized gradient descent iteration in eq. (1). Show that

$$f(w_t) - f(\bar{w}) \le (f(w_0) - f(\bar{w})) \exp(-t\lambda/\beta),$$

where  $\bar{w}$  is a unique minimizer (as established in the previous part).

#### Solution.

#### 3. (Frank-Wolfe.)

Recall the Frank-Wolfe method from lecture 13 and its associated notation: there is a bounded closed convex constraint set S, it has diameter  $D := \sup_{x,y \in S} \|x - y\|$ , and the iterates are defined via  $w_0 \in S$  (arbitrary) and thereafter

$$v_i := \underset{v \in S}{\operatorname{arg min}} \left\langle \nabla f(w_{i-1}), v \right\rangle, \qquad w_i := (1 - \eta_i) w_{i-1} + \eta_i v_i.$$

Lastly, suppose f is convex and  $\beta$ -smooth.

(a) Suppose the lecture's step sizes are replaced with  $\eta_i := 1/i$ . Show that for every  $t \ge 1$  and  $z \in S$ ,

$$f(w_t) - f(z) \le \frac{\beta D^2 (1 + \ln(t))}{2t}.$$

**Remark:** notice that something goes wrong if you instead pick  $\eta_i := 1/t$ .

(b) (Optional.) Define

$$G(w) := \begin{cases} \infty & w \notin S, \\ \sup_{v \in S} \left\langle \nabla f(w), w - v \right\rangle & w \in S. \end{cases}$$

Prove  $f(w) - \inf_{v \in S} f(v) \le G(w)$  for all w.

**Note:** there are various ways to prove this with strong duality laws; you can for instance use the two omitted convexity lectures.

(c) Using the definition of G, the guarantee in the previous part, and steps from the proof of the Frank-Wolfe iteration guarantee: prove that for any i,

$$\eta_{i+1}G(w_i) \le f(w_i) - f(w_{i+1}) + \frac{\beta \eta_{i+1}^2 D^2}{2}.$$

- (d) In lecture, we've mentioned that in general we don't have a good way to stop convex programs. The Frank-Wolfe method, on the other hand, admits a nice stopping rule. Consider the following adjusted definition of the method.
  - i. Let  $w_0 \in S$  and  $\epsilon > 0$  be given.
  - ii. For  $i \in \{1, 2, ...\}$ :
    - A.  $v_i := \arg\min_{v \in S} \langle \nabla f(w_{i-1}), v \rangle$ .
    - B. Return  $w_{i-1}$  if  $\langle \nabla f(w_{i-1}), w_{i-1} v_i \rangle \leq \epsilon$ .
    - C.  $w_i := (1 \eta_i)w_{i-1} + \eta_i v_i$  where  $\eta_i := 2/(i+1)$ .

Prove the method terminates with output  $w_{t-1}$  where

$$t \le \frac{128\beta D^2}{\epsilon}$$
 and  $f(w_{t-1}) - \inf_{v \in S} f(v) \le G(w_{t-1}) \le \epsilon$ .

**Note:** the '128' should give you some wiggle room.

**Hint:** use the previous part, and also the iteration guarantee from lecture. Divide the iterate sequence into two halves, and reason about each half differently.

#### Solution.

## 4. (Cross entropy.)

Let  $f: \mathbb{R}^d \to \mathbb{R}^k$  denote the function computed by a neural network; note the output space has k dimensions for k classes.

The standard loss is the *cross entropy loss*; given an example (x, y) with  $x \in \mathbb{R}^d$  and  $y \in \{1, \dots, k\}$ , the loss is

$$-\ln(f(x)_y);$$

similarly, the risk can be defined.

Networks usually have the  $softmax \ \sigma_{sm} : \mathbb{R}^k \to \mathbb{R}^k$  as the final activation; the softmax is defined per-coordinate as  $\sigma_{sm}(v)_i := e^{v_i} / \sum_j e^{v_j}$ . Composing this with the cross entropy loss yields the modified cross entropy loss

$$\ell(f(x), y) := -\ln(\sigma_{\rm sm}(f(x))_y).$$

- (a) Prove  $g(v) := \ln \sum_{i} \exp(v_i)$  is convex.
- (b) For any linear operator A and convex function  $g, g \circ A$  is convex.
- (c) Let data  $((x_i, y_i))_{i=1}^n$  be given. Show that the modified cross-entropy risk

$$\mathcal{R}_{\ell}(W) := \frac{1}{n} \sum_{i=1}^{n} \ell(Wx_i, y_i)$$

is convex in  $W \in \mathbb{R}^{k} \times d$ .

(**Note:** if you're not comfortable with matrix variables, just unroll it into a vector and appropriately re-define  $Wx_i$ , etc.)

(d) Define the logistic loss  $\ell_{\log}(z) := \ln(1 + \exp(z))$ , and let matrix  $W \in \mathbb{R}^{k \times d}$  be given. Find a vector  $v \in \mathbb{R}^2$  so that for any  $x \in \mathbb{R}^d$ ,  $y \in \{1, 2\}$ , and  $\tilde{y} = 2y - 3 \in \{-1, +1\}$ ,

$$\ell(Wx, y) = \ell_{\log}(\langle W^{\top}v, -x\tilde{y}\rangle).$$

(Include a rigorous derivation!)

**Remark:** this shows that logistic loss is equivalent to binary cross-entropy.

## Solution.

## 5. (Max of random variables; moment generating functions.)

An important object in the study of random variables is the moment generating function (MGF),  $M_X(t)$ , defined as  $M_X(t) := \mathbb{E}(\exp(tX))$ . ( $M_X$  will in general fail to be finite for all  $t \geq 0$ , but in this question it is finite for all  $t \geq 0$ .)

Given a family  $(X_i, \ldots, X_d)$  of i.i.d. random variables drawn according to some distribution, this question will investigate the behavior of the random variable  $Z := \|(X_1, \ldots, X_d)\|_{\infty} = \max_i |X_i|$ .

(a) Prove the following inequality, which will be convenient in the remainder of the question: for any t > 0,

$$\mathbb{E}(Z) \le \frac{1}{t} \ln \left( d \cdot \mathbb{E} \left( \exp(tX_1) + \exp(-tX_1) \right) \right).$$

**Note.** You will want to use *Jensen's inequality*, namely  $\mathbb{E}(\ln(f(X))) \leq \ln(\mathbb{E}f(X))$ .

(b) (Optional.) Suppose  $X_1$  distributed according to a Gumbel distribution with scale parameter  $\sigma$ , whereby  $\mathbb{E}(\exp(sX_1)) = \Gamma(1-s\sigma)$  for all  $s \in \mathbb{R}$ , where  $\Gamma$  denotes the gamma function. Prove that

$$\mathbb{E}(Z) \le 2\sigma \ln(d\sqrt{\pi}).$$

**Hint:** the inequality from the first part holds for all t... can you find a particularly nice choice of t?

- (c) Prove that Gaussian distribution is *subgaussian*: in particular, if  $X_1$  is Gaussian with mean 0 and variance  $\sigma^2$ , then  $\mathbb{E}(\exp(tX_1)) = \exp(t^2\sigma^2/2)$  for every  $t \in \mathbb{R}$ .
- (d) Prove that if  $X_1$  is subgaussian with variance proxy  $\sigma^2$ , meaning  $\mathbb{E}(\exp(tX_1)) \leq \exp(t^2\sigma^2/2)$  for every  $t \in \mathbb{R}$ , then

$$\mathbb{E}(Z) \le \sigma \sqrt{2\ln(2d)}.$$

(Together with the preceding part, this implies the bound for  $X_1$  a Gaussian with mean 0 and variance  $\sigma^2$ .)

(e) Was it necessary to assume  $(X_1, \ldots, X_d)$  were i.i.d.? Answer this question however you like.

When the dust has settled, I urge you to ponder the power of this modest little technique of replacing max with  $\ln \sum \exp$ .

#### Solution.