ML Theory - Homework 2

your NetID here

Version 3

Instructions. (Same as homework 1.)

- Everyone must submit an individual write-up.
- You may discuss with up to 3 other people. State their NetIDs clearly on the first page. Outside of office hours, you should not discuss with anyone but these three.
- Homework is due Wednesday, November 28, at 3:00pm; no late homework accepted.
- Please consider using the provided $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ file as a template.

1. (Miscellaneous short questions.)

(a) Let $\ell: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ be a convex loss, and fix any distribution on (x, y); consider our familiar setting of risk minimization for linear functions, meaning $f(w):=\mathbb{E} \ell(\langle w,-x y\rangle)$. Show that given a random draw (x, y) and any $g \in \partial \ell(\langle w,-x y\rangle)$, then $\mathbb{E}(-x y g) \in \partial f(w)$.
Remark: this problem justifies the choice of stochastic gradient descent used in practice.
Recall: the subgradient ∂h is defined as

$$
\partial h(w)=\left\{s \in \mathbb{R}^{d}: \forall v \in \mathbb{R}^{d} \cdot h(v) \geq h(w)+\langle s, v-w\rangle\right\} .
$$

(b) Suppose $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is λ-strongly-convex $(\lambda$-sc) and differentiable, and define the Bregman divergence

$$
D_{\Phi}(x, y):=\Phi(x)-(\Phi(y)+\langle\nabla \Phi(y), x-y\rangle)
$$

Prove that D_{Φ} is λ-sc in its first argument.
(Remark. What about the second argument? Does a weaker property hold?)
(c) Once again let $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be λ-sc. Recall the definition of Fenchel conjugate $\Phi^{*}(s):=$ $\sup _{x \in \mathbb{R}^{d}}\langle x, s\rangle-\Phi(s)$.
The update rule of mirror descent may be written

$$
w^{\prime}:=\underset{v}{\arg \min } \eta\langle\nabla f(w), v\rangle+D_{\Phi}(v, w) .
$$

Prove this is equivalent to

$$
w^{\prime \prime}:=\nabla \Phi^{*}(\nabla \Phi(w)-\eta \nabla f(w))
$$

Hint: since Φ is strongly convex, then $(\nabla \Phi)^{-1}$ exists and is equal to $\nabla \Phi^{*}$ (you may use this without proof).
(d) Suppose $Q \in \mathbb{R}^{d \times d}$ is symmetric positive definite, let $b \in \mathbb{R}^{d}$ be arbitary, and define $f(x):=$ $\frac{1}{2} x^{\top} Q x+b^{\top} x$. Using direct computation (and not the preceding inverse gradient gradient fact), derive the Fenchel conjugate f^{*}, and prove it is correct.
(e) Now suppose $Q \in \mathbb{R}^{d \times d}$ is merely symmetric positive semi-definite (it may fail to have an inverse), $b \in \mathbb{R}^{d}$ is again arbitrary, and define $f(x):=\frac{1}{2} x^{\top} Q x+b^{\top} x$. Derive the Fenchel conjugate f^{*}, and prove it is correct.
(f) Freedman's inequality (Bernstein's inequality for martingales) implies: given martingale difference sequence $\left(Z_{i}\right)_{i=1}^{n}$ with $\left|Z_{i}\right| \leq b$ and $\sum_{i} \mathbb{E}\left(Z_{i}^{2} \mid Z_{<i}\right) \leq v$, then with probability at least $1-\delta$,

$$
\sum_{i} Z_{i} \leq \sqrt{2 v \ln (1 / \delta)}+\frac{b \ln (1 / \delta)}{3}
$$

Consider the setting of the theorem in Lecture 15 , but additionally $\mathbb{E}\left(\left\|g_{i}-s_{i}\right\|^{2} \mid w_{i-1}\right) \leq \sigma^{2}$, and that for any given w_{i-1} it is possible to obtain an arbitrary number of mutually conditionally independent stochastic gradients g_{i} with all stated properties.
Use all these assumptions together with the above version of Freedman's inequality to provide a refinement of the theorem in Lecture 15.
(g) Consider the setting of the previous part, but suppose a minibatch of size b is used (b conditionally independent stochastic gradients are averaged together for each step). State the optimal values of step size η and batch size b by optimizing the right hand side of the previous bound.

Solution.

(Your solution here.)

2. (Dual norms.)

Recall that for any norm $\|\cdot\|$, there is also a dual norm

$$
\|s\|_{*}=\sup \{\langle s, v\rangle:\|v\| \leq 1\}
$$

You may assume this is a valid norm without proof. For this problem, suppose vectors lie in \mathbb{R}^{d}, but norm duality works beyond that.
Note: in all parts of this problem, assume a general norm and dual-norm pair! Do not assume l_{2} norm!
(a) Prove $|\langle s, v\rangle| \leq\|v\| \cdot\|s\|_{*}$ (a generalized Hölder inequality).
(b) Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ has β-Lipschitz gradients wrt $\|\cdot\|$, meaning

$$
\|\nabla f(x)-\nabla f(y)\|_{*} \leq \beta\|x-y\|
$$

(Gradients live in dual space, get dual norm.) Prove

$$
|f(x+v)-f(x)-\langle\nabla f(x), v\rangle| \leq \frac{\beta}{2}\|v\|^{2}
$$

(Major hint: repeat the integral calculation for $\|\cdot\|_{2}$ from lecture 11.)
(c) Suppose f is β-smooth wrt $\|\cdot\|$ as above, and suppose the gradient descent iteration is replaced with the steps

$$
\begin{equation*}
v:=\arg \max \{\langle\nabla f(w), v\rangle:\|v\| \leq 1\}, \quad w^{\prime}:=w-v\|\nabla f(w)\|_{*} / \beta \tag{1}
\end{equation*}
$$

Show that

$$
f\left(w^{\prime}\right) \leq f(w)-\|\nabla f(w)\|_{*}^{2} /(2 \beta)
$$

(d) Suppose that f is λ strongly convex wrt $\|\cdot\|$, meaning

$$
f(w+v) \geq f(w)+\langle\nabla f(w), v\rangle+\frac{\lambda}{2}\|v\|^{2} .
$$

Prove that a minimizer \bar{w} exists, is unique, and for any w

$$
f(\bar{w}) \geq f(w)-\frac{\|\nabla f(w)\|_{*}^{2}}{2 \lambda}
$$

(You may assume without proof that convex functions over \mathbb{R}^{d} are continuous, and that continuous functions over \mathbb{R}^{d} attain minima and maxima over closed bounded sets.)
(e) Suppose that f is not only β-smooth wrt $\|\cdot\|$ as above, but moreover it is λ strongly convex wrt $\|\cdot\|$. Suppose $\left(w_{i}\right)_{i \leq t}$ are given by the generalized gradient descent iteration in eq. (1). Show that

$$
f\left(w_{t}\right)-f(\bar{w}) \leq\left(f\left(w_{0}\right)-f(\bar{w})\right) \exp (-t \lambda / \beta)
$$

where \bar{w} is a unique minimizer (as established in the previous part).

Solution.

(Your solution here.)

3. (Frank-Wolfe.)

Recall the Frank-Wolfe method from lecture 13 and its associated notation: there is a bounded closed convex constraint set S, it has diameter $D:=\sup _{x, y \in S}\|x-y\|$, and the iterates are defined via $w_{0} \in S$ (arbitrary) and thereafter

$$
v_{i}:=\underset{v \in S}{\arg \min }\left\langle\nabla f\left(w_{i-1}\right), v\right\rangle, \quad w_{i}:=\left(1-\eta_{i}\right) w_{i-1}+\eta_{i} v_{i}
$$

Lastly, suppose f is convex and β-smooth.
(a) Suppose the lecture's step sizes are replaced with $\eta_{i}:=1 / i$. Show that for every $t \geq 1$ and $z \in S$,

$$
f\left(w_{t}\right)-f(z) \leq \frac{\beta D^{2}(1+\ln (t))}{2 t}
$$

Remark: notice that something goes wrong if you instead pick $\eta_{i}:=1 / t$.
(b) (Optional.) Define

$$
G(w):= \begin{cases}\infty & w \notin S \\ \sup _{v \in S}\langle\nabla f(w), w-v\rangle & w \in S\end{cases}
$$

Prove $f(w)-\inf _{v \in S} f(v) \leq G(w)$ for all w.
Note: there are various ways to prove this with strong duality laws; you can for instance use the two omitted convexity lectures.
(c) Using the definition of G, the guarantee in the previous part, and steps from the proof of the Frank-Wolfe iteration guarantee: prove that for any i,

$$
\eta_{i+1} G\left(w_{i}\right) \leq f\left(w_{i}\right)-f\left(w_{i+1}\right)+\frac{\beta \eta_{i+1}^{2} D^{2}}{2}
$$

(d) In lecture, we've mentioned that in general we don't have a good way to stop convex programs. The Frank-Wolfe method, on the other hand, admits a nice stopping rule. Consider the following adjusted definition of the method.
i. Let $w_{0} \in S$ and $\epsilon>0$ be given.
ii. For $i \in\{1,2, \ldots\}$:
A. $v_{i}:=\arg \min _{v \in S}\left\langle\nabla f\left(w_{i-1}\right), v\right\rangle$.
B. Return w_{i-1} if $\left\langle\nabla f\left(w_{i-1}\right), w_{i-1}-v_{i}\right\rangle \leq \epsilon$.
C. $w_{i}:=\left(1-\eta_{i}\right) w_{i-1}+\eta_{i} v_{i}$ where $\eta_{i}:=2 /(i+1)$.

Prove the method terminates with output w_{t-1} where

$$
t \leq \frac{128 \beta D^{2}}{\epsilon} \quad \text { and } \quad f\left(w_{t-1}\right)-\inf _{v \in S} f(v) \leq G\left(w_{t-1}\right) \leq \epsilon
$$

Note: the ' 128 ' should give you some wiggle room.
Hint: use the previous part, and also the iteration guarantee from lecture. Divide the iterate sequence into two halves, and reason about each half differently.

Solution.

(Your solution here.)

4. (Cross entropy.)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ denote the function computed by a neural network; note the output space has k dimensions for k classes.
The standard loss is the cross entropy loss; given an example (x, y) with $x \in \mathbb{R}^{d}$ and $y \in\{1, \ldots, k\}$, the loss is

$$
-\ln \left(f(x)_{y}\right)
$$

similarly, the risk can be defined.
Networks usually have the softmax $\sigma_{\mathrm{sm}}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ as the final activation; the softmax is defined per-coordinate as $\sigma_{\mathrm{sm}}(v)_{i}:=e^{v_{i}} / \sum_{j} e^{v_{j}}$. Composing this with the cross entropy loss yields the modified cross entropy loss

$$
\ell(f(x), y):=-\ln \left(\sigma_{\mathrm{sm}}(f(x))_{y}\right)
$$

(a) Prove $g(v):=\ln \sum_{i} \exp \left(v_{i}\right)$ is convex.
(b) For any linear operator A and convex function $g, g \circ A$ is convex.
(c) Let data $\left(\left(x_{i}, y_{i}\right)\right)_{i=1}^{n}$ be given. Show that the modified cross-entropy risk

$$
\mathcal{R}_{\ell}(W):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(W x_{i}, y_{i}\right)
$$

is convex in $W \in \mathbb{R} k \times d$.
(Note: if you're not comfortable with matrix variables, just unroll it into a vector and appropriately re-define $W x_{i}$, etc.)
(d) Define the logistic $\operatorname{loss} \ell_{\log }(z):=\ln (1+\exp (z))$, and let matrix $W \in \mathbb{R}^{k \times d}$ be given. Find a vector $v \in \mathbb{R}^{2}$ so that for any $x \in \mathbb{R}^{d}, y \in\{1,2\}$, and $\tilde{y}=2 y-3 \in\{-1,+1\}$,

$$
\ell(W x, y)=\ell_{\log }\left(\left\langle W^{\top} v,-x \tilde{y}\right\rangle\right)
$$

(Include a rigorous derivation!)
Remark: this shows that logistic loss is equivalent to binary cross-entropy.

Solution.

(Your solution here.)

5. (Max of random variables; moment generating functions.)

An important object in the study of random variables is the moment generating function (MGF), $M_{X}(t)$, defined as $M_{X}(t):=\mathbb{E}(\exp (t X))$. (M_{X} will in general fail to be finite for all $t \geq 0$, but in this question it is finite for all $t \geq 0$.)
Given a family $\left(X_{i}, \ldots, X_{d}\right)$ of i.i.d. random variables drawn according to some distribution, this question will investigate the behavior of the random variable $Z:=\left\|\left(X_{1}, \ldots, X_{d}\right)\right\|_{\infty}=\max _{i}\left|X_{i}\right|$.
(a) Prove the following inequality, which will be convenient in the remainder of the question: for any $t>0$,

$$
\mathbb{E}(Z) \leq \frac{1}{t} \ln \left(d \cdot \mathbb{E}\left(\exp \left(t X_{1}\right)+\exp \left(-t X_{1}\right)\right)\right)
$$

Note. You will want to use Jensen's inequality, namely $\mathbb{E}(\ln (f(X))) \leq \ln (\mathbb{E} f(X))$.
(b) (Optional.) Suppose X_{1} distributed according to a Gumbel distribution with scale parameter σ, whereby $\mathbb{E}\left(\exp \left(s X_{1}\right)\right)=\Gamma(1-s \sigma)$ for all $s \in \mathbb{R}$, where Γ denotes the gamma function. Prove that

$$
\mathbb{E}(Z) \leq 2 \sigma \ln (d \sqrt{\pi})
$$

Hint: the inequality from the first part holds for all t... can you find a particularly nice choice of t ?
(c) Prove that Gaussian distribution is subgaussian: in particular, if X_{1} is Gaussian with mean 0 and variance σ^{2}, then $\mathbb{E}\left(\exp \left(t X_{1}\right)\right)=\exp \left(t^{2} \sigma^{2} / 2\right)$ for every $t \in \mathbb{R}$.
(d) Prove that if X_{1} is subgaussian with variance proxy σ^{2}, meaning $\mathbb{E}\left(\exp \left(t X_{1}\right)\right) \leq \exp \left(t^{2} \sigma^{2} / 2\right)$ for every $t \in \mathbb{R}$, then

$$
\mathbb{E}(Z) \leq \sigma \sqrt{2 \ln (2 d)}
$$

(Together with the preceding part, this implies the bound for X_{1} a Gaussian with mean 0 and variance σ^{2}.)
(e) Was it necessary to assume $\left(X_{1}, \ldots, X_{d}\right)$ were i.i.d.? Answer this question however you like.

When the dust has settled, I urge you to ponder the power of this modest little technique of replacing max with $\ln \sum$ exp.

Solution.

(Your solution here.)

