
ML Theory — Homework 2

your NetID here

Version 3

Instructions. (Same as homework 1.)

• Everyone must submit an individual write-up.

• You may discuss with up to 3 other people. State their NetIDs clearly on the first page. Outside of
office hours, you should not discuss with anyone but these three.

• Homework is due Wednesday, November 28, at 3:00pm; no late homework accepted.

• Please consider using the provided LATEX file as a template.
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1. (Miscellaneous short questions.)

(a) Let ` : R→ R≥0 be a convex loss, and fix any distribution on (x, y); consider our familiar setting of
risk minimization for linear functions, meaning f(w) := E`(〈w,−xy〉). Show that given a random
draw (x, y) and any g ∈ ∂`(〈w,−xy〉), then E(−xyg) ∈ ∂f(w).

Remark: this problem justifies the choice of stochastic gradient descent used in practice.

Recall: the subgradient ∂h is defined as

∂h(w) =
{
s ∈ Rd : ∀v ∈ Rd � h(v) ≥ h(w) + 〈s, v − w〉

}
.

(b) Suppose Φ : Rd → R is λ-strongly-convex (λ-sc) and differentiable, and define the Bregman
divergence

DΦ(x, y) := Φ(x)−
(

Φ(y) +
〈
∇Φ(y), x− y

〉)
.

Prove that DΦ is λ-sc in its first argument.

(Remark. What about the second argument? Does a weaker property hold?)

(c) Once again let Φ : Rd → R be λ-sc. Recall the definition of Fenchel conjugate Φ∗(s) :=
supx∈Rd 〈x, s〉 − Φ(s).

The update rule of mirror descent may be written

w′ := arg min
v

η
〈
∇f(w), v

〉
+DΦ(v, w).

Prove this is equivalent to
w′′ := ∇Φ∗

(
∇Φ(w)− η∇f(w)

)
.

Hint: since Φ is strongly convex, then (∇Φ)−1 exists and is equal to ∇Φ∗ (you may use this
without proof).

(d) Suppose Q ∈ Rd×d is symmetric positive definite, let b ∈ Rd be arbitary, and define f(x) :=
1
2x
>Qx+ b>x. Using direct computation (and not the preceding inverse gradient gradient fact),

derive the Fenchel conjugate f∗, and prove it is correct.

(e) Now suppose Q ∈ Rd×d is merely symmetric positive semi-definite (it may fail to have an inverse),
b ∈ Rd is again arbitrary, and define f(x) := 1

2x
>Qx+ b>x. Derive the Fenchel conjugate f∗, and

prove it is correct.

(f) Freedman’s inequality (Bernstein’s inequality for martingales) implies: given martingale difference
sequence (Zi)

n
i=1 with |Zi| ≤ b and

∑
i E(Z2

i |Z<i) ≤ v, then with probability at least 1− δ,

∑
i

Zi ≤
√

2v ln(1/δ) +
b ln(1/δ)

3
.

Consider the setting of the theorem in Lecture 15, but additionally E(‖gi − si‖2 | wi−1) ≤ σ2, and
that for any given wi−1 it is possible to obtain an arbitrary number of mutually conditionally
independent stochastic gradients gi with all stated properties.

Use all these assumptions together with the above version of Freedman’s inequality to provide a
refinement of the theorem in Lecture 15.

(g) Consider the setting of the previous part, but suppose a minibatch of size b is used (b conditionally
independent stochastic gradients are averaged together for each step). State the optimal values of
step size η and batch size b by optimizing the right hand side of the previous bound.

Solution.

(Your solution here.)
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2. (Dual norms.)

Recall that for any norm ‖ · ‖, there is also a dual norm

‖s‖∗ = sup
{
〈s, v〉 : ‖v‖ ≤ 1

}
.

You may assume this is a valid norm without proof. For this problem, suppose vectors lie in Rd, but
norm duality works beyond that.

Note: in all parts of this problem, assume a general norm and dual-norm pair! Do not assume l2 norm!

(a) Prove | 〈s, v〉 | ≤ ‖v‖ · ‖s‖∗ (a generalized Hölder inequality).

(b) Suppose f : Rd → R has β-Lipschitz gradients wrt ‖ · ‖, meaning

‖∇f(x)−∇f(y)‖∗ ≤ β‖x− y‖.

(Gradients live in dual space, get dual norm.) Prove∣∣∣f(x+ v)− f(x)−
〈
∇f(x), v

〉∣∣∣ ≤ β

2
‖v‖2.

(Major hint: repeat the integral calculation for ‖ · ‖2 from lecture 11.)

(c) Suppose f is β-smooth wrt ‖ · ‖ as above, and suppose the gradient descent iteration is replaced
with the steps

v := arg max
{〈
∇f(w), v

〉
: ‖v‖ ≤ 1

}
, w′ := w − v‖∇f(w)‖∗/β. (1)

Show that
f(w′) ≤ f(w)− ‖∇f(w)‖2∗/(2β).

(d) Suppose that f is λ strongly convex wrt ‖ · ‖, meaning

f(w + v) ≥ f(w) +
〈
∇f(w), v

〉
+
λ

2
‖v‖2.

Prove that a minimizer w̄ exists, is unique, and for any w

f(w̄) ≥ f(w)− ‖∇f(w)‖2∗
2λ

.

(You may assume without proof that convex functions over Rd are continuous, and that continuous
functions over Rd attain minima and maxima over closed bounded sets.)

(e) Suppose that f is not only β-smooth wrt ‖ · ‖ as above, but moreover it is λ strongly convex wrt
‖ · ‖. Suppose (wi)i≤t are given by the generalized gradient descent iteration in eq. (1). Show that

f(wt)− f(w̄) ≤
(
f(w0)− f(w̄)

)
exp

(
−tλ/β

)
,

where w̄ is a unique minimizer (as established in the previous part).

Solution.

(Your solution here.)
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3. (Frank-Wolfe.)

Recall the Frank-Wolfe method from lecture 13 and its associated notation: there is a bounded closed
convex constraint set S, it has diameter D := supx,y∈S ‖x− y‖, and the iterates are defined via w0 ∈ S
(arbitrary) and thereafter

vi := arg min
v∈S

〈
∇f(wi−1), v

〉
, wi := (1− ηi)wi−1 + ηivi.

Lastly, suppose f is convex and β-smooth.

(a) Suppose the lecture’s step sizes are replaced with ηi := 1/i. Show that for every t ≥ 1 and z ∈ S,

f(wt)− f(z) ≤ βD2(1 + ln(t))

2t
.

Remark: notice that something goes wrong if you instead pick ηi := 1/t.

(b) (Optional.) Define

G(w) :=

{
∞ w 6∈ S,
supv∈S

〈
∇f(w), w − v

〉
w ∈ S.

Prove f(w)− infv∈S f(v) ≤ G(w) for all w.

Note: there are various ways to prove this with strong duality laws; you can for instance use the
two omitted convexity lectures.

(c) Using the definition of G, the guarantee in the previous part, and steps from the proof of the
Frank-Wolfe iteration guarantee: prove that for any i,

ηi+1G(wi) ≤ f(wi)− f(wi+1) +
βη2

i+1D
2

2
.

(d) In lecture, we’ve mentioned that in general we don’t have a good way to stop convex programs.
The Frank-Wolfe method, on the other hand, admits a nice stopping rule. Consider the following
adjusted definition of the method.

i. Let w0 ∈ S and ε > 0 be given.

ii. For i ∈ {1, 2, . . .}:
A. vi := arg minv∈S

〈
∇f(wi−1), v

〉
.

B. Return wi−1 if
〈
∇f(wi−1), wi−1 − vi

〉
≤ ε.

C. wi := (1− ηi)wi−1 + ηivi where ηi := 2/(i+1).

Prove the method terminates with output wt−1 where

t ≤ 128βD2

ε
and f(wt−1)− inf

v∈S
f(v) ≤ G(wt−1) ≤ ε.

Note: the ‘128’ should give you some wiggle room.

Hint: use the previous part, and also the iteration guarantee from lecture. Divide the iterate
sequence into two halves, and reason about each half differently.

Solution.

(Your solution here.)
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4. (Cross entropy.)

Let f : Rd → Rk denote the function computed by a neural network; note the output space has k
dimensions for k classes.

The standard loss is the cross entropy loss; given an example (x, y) with x ∈ Rd and y ∈ {1, . . . , k}, the
loss is

− ln(f(x)y);

similarly, the risk can be defined.

Networks usually have the softmax σsm : Rk → Rk as the final activation; the softmax is defined
per-coordinate as σsm(v)i := evi/

∑
j e

vj . Composing this with the cross entropy loss yields the modified
cross entropy loss

`(f(x), y) := − ln(σsm(f(x))y).

(a) Prove g(v) := ln
∑

i exp(vi) is convex.

(b) For any linear operator A and convex function g, g ◦A is convex.

(c) Let data ((xi, yi))
n
i=1 be given. Show that the modified cross-entropy risk

R`(W ) :=
1

n

n∑
i=1

`(Wxi, yi)

is convex in W ∈ Rk × d.

(Note: if you’re not comfortable with matrix variables, just unroll it into a vector and appropriately
re-define Wxi, etc.)

(d) Define the logistic loss `log(z) := ln(1 + exp(z)), and let matrix W ∈ Rk×d be given. Find a vector
v ∈ R2 so that for any x ∈ Rd, y ∈ {1, 2}, and ỹ = 2y − 3 ∈ {−1,+1},

`(Wx, y) = `log(
〈
W>v,−xỹ

〉
).

(Include a rigorous derivation!)

Remark: this shows that logistic loss is equivalent to binary cross-entropy.

Solution.

(Your solution here.)
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5. (Max of random variables; moment generating functions.)

An important object in the study of random variables is the moment generating function (MGF),
MX(t), defined as MX(t) := E(exp(tX)). (MX will in general fail to be finite for all t ≥ 0, but in this
question it is finite for all t ≥ 0.)

Given a family (Xi, . . . , Xd) of i.i.d. random variables drawn according to some distribution, this
question will investigate the behavior of the random variable Z := ‖(X1, . . . , Xd)‖∞ = maxi |Xi|.

(a) Prove the following inequality, which will be convenient in the remainder of the question: for any
t > 0,

E(Z) ≤ 1

t
ln
(
d · E

(
exp(tX1) + exp(−tX1)

))
.

Note. You will want to use Jensen’s inequality, namely E
(
ln(f(X))

)
≤ ln

(
Ef(X)

)
.

(b) (Optional.) Suppose X1 distributed according to a Gumbel distribution with scale parameter σ,
whereby E(exp(sX1)) = Γ(1− sσ) for all s ∈ R, where Γ denotes the gamma function. Prove that

E(Z) ≤ 2σ ln(d
√
π).

Hint: the inequality from the first part holds for all t. . . can you find a particularly nice choice of
t?

(c) Prove that Gaussian distribution is subgaussian: in particular, if X1 is Gaussian with mean 0 and
variance σ2, then E(exp(tX1)) = exp(t2σ2/2) for every t ∈ R.

(d) Prove that if X1 is subgaussian with variance proxy σ2, meaning E(exp(tX1)) ≤ exp(t2σ2/2) for
every t ∈ R, then

E(Z) ≤ σ
√

2 ln(2d).

(Together with the preceding part, this implies the bound for X1 a Gaussian with mean 0 and
variance σ2.)

(e) Was it necessary to assume (X1, . . . , Xd) were i.i.d.? Answer this question however you like.

When the dust has settled, I urge you to ponder the power of this modest little technique of replacing
max with ln

∑
exp.

Solution.

(Your solution here.)
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