# ML Theory - Homework 3 

your NetID here

## Version 0

Instructions. (Same as homework 2.)

- Everyone must submit an individual write-up.
- You may discuss with up to 3 other people. State their NetIDs clearly on the first page. Outside of office hours, you should not discuss with anyone but these three.
- Homework is due Tuesday, December 18, at 11:59pm; no late homework accepted.
- Please consider using the provided $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ file as a template.


## 1. Calisthenics.

(a) Let $k$ real-valued functions $\mathcal{F}:=\left(f_{1}, \ldots, f_{k}\right)$ be given, and define

$$
\mathcal{G}:=\left\{x \mapsto \operatorname{sgn}\left(b+\sum_{i} a_{i} f_{i}(x)\right): a \in \mathbb{R}^{k}, b \in \mathbb{R}\right\} .
$$

Prove $\operatorname{VC}(\mathcal{G}) \leq k+1$.
Hint. Use the VC-dimension of linear separators from Lecture 22.
Bonus (ungraded). When is this VC upper bound an equality?
(b) Let $\mathcal{F}:=\left\{x \mapsto \mathbb{1}\left[\|x-a\|_{2}^{2} \geq b\right]: a \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$ denote indicators of balls in $\mathbb{R}^{d}$. Prove $\mathrm{VC}(\mathcal{F}) \leq d+2$.
Hint. Use the previous part.
(c) Recall from Lecture 21 the ramp loss $\ell_{\gamma}($ where $\gamma>0)$, defined as

$$
\ell_{\gamma}(r):= \begin{cases}0 & r<-\gamma \\ 1+r / \gamma & r \in[-\gamma, 0] \\ 1 & r>0\end{cases}
$$

Prove that for any convex $\ell: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$,

$$
\ell_{\gamma}(r) \leq \frac{\ell(r)}{\ell(0)} \quad \text { when } \quad 0<\gamma \leq \frac{\ell(0)}{\ell^{\prime}(0)}
$$

Remarks. i. Both squared and logistic losses fare pretty well with this. ii. This allows $\mathcal{R}_{\ell}$ to be used in place of $\mathcal{R}_{\gamma}$ in any margin-based generalization bound.
(d) Prove the final theorem in Lecture 19, the three-part "core Rademacher theorem", via the other lemmas and theorems in Lecture 19. (Your main work is in checking the bounded differences condition, and then applying McDiarmid's inequality to a few other quantities from that lecture.)

## Solution.

(Your solution here.)

## 2. Covering non-decreasing functions.

Let $\mathcal{F}$ denote all non-decreasing functions from $\mathbb{R}$ to $[0,1]$, Let a sample $S=\left(x_{1}, \ldots, x_{n}\right)$ be given, and as usual let $\mathcal{F}_{\mid S} \subseteq \mathbb{R}^{n}$ denote the restriction of $\mathcal{F}$ to the sample $S$.
(a) Prove $\mathcal{N}\left(\mathcal{F}_{\mid S}, \epsilon,\|\cdot\|_{2}\right) \leq(1+n)^{1+\sqrt{n} / \epsilon}$.

Note. The bound has some wiggle room. It's okay if you're a little off.
Hint. If you have $n$ (and not $\sqrt{n}$ ) in your numerator, then try to shift the focus of your cover to the range rather than the domain...
(b) Using the Pollard bound from Lecture 24, prove

$$
\operatorname{URad}\left(\mathcal{F}_{\mid S}\right) \leq 1024(n \ln (1+n))^{2 / 3}
$$

Note. 1024 is also wiggle room. .
(c) Using the Dudley bound from Lecture 24, prove

$$
\operatorname{URad}\left(\mathcal{F}_{\mid S}\right) \leq 1024(n \ln (1+n))^{1 / 2}
$$

## Solution.

(Your solution here.)

## 3. Covering linear functions.

Throughout, let $S=\left(x_{1}, \ldots, x_{n}\right)$ denote a sample of size $n$, and construct matrix $X \in \mathbb{R}^{n \times d}$ with the sample points as rows.
(a) Prove

$$
\ln \mathcal{N}\left(\left\{x \mapsto\langle x, w\rangle: w \in \Delta_{d}\right\}_{\mid S}, \epsilon,\|\cdot\|_{2}\right) \leq\left\lceil\frac{\|X\|_{2, \infty}^{2}}{\epsilon^{2}}\right\rceil \ln (d)
$$

where $\Delta_{d}=\left\{\alpha \in \mathbb{R}_{\geq 0}^{d}: \sum_{i} \alpha_{i}=1\right\}$ and $\|X\|_{2, \infty}=\max _{i}\left\|X \mathbf{e}_{i}\right\|_{2}$.
Hint. Use the Maurey Lemma from Lecture 13.
(b) Prove

$$
\ln \mathcal{N}\left(\left\{x \mapsto\langle x, w\rangle:\|w\|_{1} \leq a\right\}_{\mid S}, \epsilon,\|\cdot\|_{2}\right) \leq\left\lceil\frac{a^{2}\|X\|_{2, \infty}^{2}}{\epsilon^{2}}\right\rceil \ln (2 d)
$$

Hint. Use the previous part.
(c) Define

$$
\mathcal{F}_{2}(a):=\left\{x \mapsto\langle x, w\rangle:\|w\|_{2} \leq a\right\} .
$$

Prove

$$
\ln \mathcal{N}\left(\mathcal{F}_{2}(a)_{\mid S}, \epsilon,\|\cdot\|_{2}\right) \leq\left\lceil\frac{a^{2}\|X\|_{\mathrm{F}}^{2}}{\epsilon^{2}}\right\rceil \ln (2 d)
$$

where $\|X\|_{\mathrm{F}}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{d}\left(x_{i}\right)_{j}^{2}}$ denotes the Frobenius norm.
Hint. Use the previous part.
(d) Use the Pollard bound from Lecture 26 to prove

$$
\operatorname{URad}\left(\mathcal{F}_{2}(a)_{\mid S}\right)=\widetilde{\mathcal{O}}\left(a\|X\|_{\mathrm{F}} n^{1 / 4}\right)
$$

Remark. Use the $\widetilde{\mathcal{O}}$ to hide polylog factors of $a,\|X\|_{F}, n, d$; the ceiling in the covering number makes things ugly.
(e) Use the Dudley bound from Lecture 26 to prove

$$
\operatorname{URad}\left(\mathcal{F}_{2}(a)_{\mid S}\right)=\widetilde{\mathcal{O}}\left(a\|X\|_{\mathrm{F}}\right)
$$

Remark. The direct Rademacher proof gave $\operatorname{URad}\left(\mathcal{F}_{2}(a)_{\mid S}\right) \leq a\|X\|_{\mathrm{F}}$.

## Solution.

(Your solution here.)
4. Are we still friends?

Solution.
(Your solution here.)

