
ML Theory — Homework 3

your NetID here

Version 0

Instructions. (Same as homework 2.)

• Everyone must submit an individual write-up.

• You may discuss with up to 3 other people. State their NetIDs clearly on the first page. Outside of
office hours, you should not discuss with anyone but these three.

• Homework is due Tuesday, December 18, at 11:59pm; no late homework accepted.

• Please consider using the provided LATEX file as a template.
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1. Calisthenics.

(a) Let k real-valued functions F := (f1, . . . , fk) be given, and define

G :=
{
x 7→ sgn

(
b+

∑
i

aifi(x)
)

: a ∈ Rk, b ∈ R
}
.

Prove vc(G) ≤ k + 1.

Hint. Use the VC-dimension of linear separators from Lecture 22.

Bonus (ungraded). When is this VC upper bound an equality?

(b) Let F := {x 7→ 1[‖x − a‖22 ≥ b] : a ∈ Rd, b ∈ R} denote indicators of balls in Rd. Prove
vc(F) ≤ d+ 2.

Hint. Use the previous part.

(c) Recall from Lecture 21 the ramp loss `γ (where γ > 0), defined as

`γ(r) :=


0 r < −γ,
1 + r/γ r ∈ [−γ, 0],

1 r > 0.

Prove that for any convex ` : R→ R≥0,

`γ(r) ≤ `(r)

`(0)
when 0 < γ ≤ `(0)

`′(0)
.

Remarks. i. Both squared and logistic losses fare pretty well with this. ii. This allows R` to be
used in place of Rγ in any margin-based generalization bound.

(d) Prove the final theorem in Lecture 19, the three-part “core Rademacher theorem”, via the other
lemmas and theorems in Lecture 19. (Your main work is in checking the bounded differences
condition, and then applying McDiarmid’s inequality to a few other quantities from that lecture.)

Solution.

(Your solution here.)
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2. Covering non-decreasing functions.

Let F denote all non-decreasing functions from R to [0, 1], Let a sample S = (x1, . . . , xn) be given, and
as usual let F|S ⊆ Rn denote the restriction of F to the sample S.

(a) Prove N (F|S , ε, ‖ · ‖2) ≤ (1 + n)1+
√
n/ε.

Note. The bound has some wiggle room. It’s okay if you’re a little off.

Hint. If you have n (and not
√
n) in your numerator, then try to shift the focus of your cover to

the range rather than the domain. . .

(b) Using the Pollard bound from Lecture 24, prove

URad(F|S) ≤ 1024(n ln(1 + n))2/3.

Note. 1024 is also wiggle room. . .

(c) Using the Dudley bound from Lecture 24, prove

URad(F|S) ≤ 1024(n ln(1 + n))1/2.

Solution.

(Your solution here.)
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3. Covering linear functions.

Throughout, let S = (x1, . . . , xn) denote a sample of size n, and construct matrix X ∈ Rn×d with the
sample points as rows.

(a) Prove

lnN
({
x 7→ 〈x,w〉 : w ∈ ∆d

}
|S , ε, ‖ · ‖2

)
≤

⌈
‖X‖22,∞
ε2

⌉
ln(d),

where ∆d =
{
α ∈ Rd≥0 :

∑
i αi = 1

}
and ‖X‖2,∞ = maxi ‖Xei‖2.

Hint. Use the Maurey Lemma from Lecture 13.

(b) Prove

lnN
({
x 7→ 〈x,w〉 : ‖w‖1 ≤ a

}
|S , ε, ‖ · ‖2

)
≤

⌈
a2‖X‖22,∞

ε2

⌉
ln(2d).

Hint. Use the previous part.

(c) Define
F2(a) :=

{
x 7→ 〈x,w〉 : ‖w‖2 ≤ a

}
.

Prove

lnN
(
F2(a)|S , ε, ‖ · ‖2

)
≤

⌈
a2‖X‖2F
ε2

⌉
ln(2d),

where ‖X‖F =
√∑n

i=1

∑d
j=1(xi)2j denotes the Frobenius norm.

Hint. Use the previous part.

(d) Use the Pollard bound from Lecture 26 to prove

URad(F2(a)|S) = Õ
(
a‖X‖Fn1/4

)
.

Remark. Use the Õ to hide polylog factors of a, ‖X‖F, n, d; the ceiling in the covering number
makes things ugly.

(e) Use the Dudley bound from Lecture 26 to prove

URad(F2(a)|S) = Õ
(
a‖X‖F

)
.

Remark. The direct Rademacher proof gave URad(F2(a)|S) ≤ a‖X‖F.

Solution.

(Your solution here.)
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4. Are we still friends?

Solution.

(Your solution here.)
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