Lecture 10. (Sketch.)

Today we'll cover "online concept learning".

This is a classical online setting where the vector we receive x_i, but then work only with the evaluations of some hypothesis/concept set H:

$$(h_1(x_i), h_2(x_i), \ldots, h_d(x_i)) \in \{0, 1\}^d.$$

(Sometimes it's $\{-1,+1\}^d$.)

Sometimes these predictors are called "experts", and sometimes we assume there is a perfect expert, meaning ∃h ∈ H with h(x_i) = y_i for all i.

[I discussed a few things at the start of lecture which I'll omit here, for instance a guarantee for Perceptron in the nonseparable case.]

1. Two baseline methods.

Consider the setting that $\exists \bar{h} \in \mathcal{H}$, $\bar{h}(x_i) = y_i$ for all *i*. This means that each iteration can permanently ignore any $h \in \mathcal{H}$ which makes any mistakes.

CONSISTENT.

- 1. Initialize $\mathcal{H}_0 = \mathcal{H}$.
- 2. For $i \in \{1, 2, ...\}$:
 - 2.1 Receive x_i .
 - 2.2 Choose any $h_i \in \mathcal{H}_{i-1}$, output $\hat{y}_i := h_i(x_i)$.
 - 2.3 Receive y_i , construct \mathcal{H}_i :

$$\mathcal{H}_i \coloneqq egin{cases} \mathcal{H}_{i-1} & \hat{y}_i = y_i, \ \mathcal{H}_{i-1} \setminus \{h_i\} & \hat{y}_i \neq y_i. \end{cases}$$

Theorem. If $\exists \bar{h}, \bar{h}(x_i) = y_i$, and $(\hat{y}_i)_{i \ge 1}$ are output by CONSISTENT,

$$\sum_{i\geq 1} \mathbb{1}[\hat{y}_i \neq y_i] \leq |\mathcal{H}| - 1$$

Proof. By the update rule for \mathcal{H}_i ,

$$|\mathcal{H}_i| = |\mathcal{H}_{i-1}| - \mathbb{1}[\hat{y}_i \neq y_i]$$

which rearranges to give $\mathbb{1}[\hat{y}_i \neq y_i] \leq |\mathcal{H}_{i-1}| - |\mathcal{H}_i|$. Applying $\sum_{i \leq t}$ to both sides,

$$\sum_{i \leq t} \mathbb{1}[\hat{y}_i \neq y_i] = \sum_{i \leq t} \left(|\mathcal{H}_{i-1}| - |\mathcal{H}_i| \right) = |\mathcal{H}_0| - |\mathcal{H}_n|$$
$$\leq |\mathcal{H}| - |\{\bar{h}\}| = |\mathcal{H}| - 1.$$

Rather than removing only one hypothesis, we can remove all hypotheses that make a mistake on x_i .

In general, the subset of \mathcal{H} which is consistent with all examples seen up through time *i*, meaning $((x_j, y_j))_{j \le i}$, is called the **version space**: specifically,

$$\{h \in \mathcal{H} : \forall j \leq i \cdot h(x_i) = y_i\}.$$

We can update CONSISTENT to remove more hypotheses, but without another change we can still guarantee only $|\mathcal{H}_i| \leq |\mathcal{H}_{i-1}| - \mathbb{1}[\hat{y}_i \neq y_i].$

We can remove more hypotheses by choosing h_i more carefully.

HALVING.

- 1. Initialize version space $\mathcal{H}_0 = \mathcal{H}$.
- 2. For $i \in \{1, 2, ...\}$:
 - 2.1 Receive x_i .
 - 2.2 Choose majority label:

 $\hat{y}_i := \arg \max_{y} \left| \left\{ h \in \mathcal{H} : h(x_i) = y \right\} \right|.$

2.3 Receive y_i , update version space \mathcal{H}_i :

$$\mathcal{H}_i := \left\{ h \in \mathcal{H}_{i-1} : h(x_i) = y_i \right\}.$$

Theorem. If $\exists \bar{h}, \bar{h}(x_i) = y_i$, and $(\hat{y}_i)_{i \ge 1}$ are output by HALVING,

$$\sum_{i\geq 1} \mathbb{1}[\hat{y}_i \neq y_i] \leq \lg |\mathcal{H}|.$$

Proof. Since we chose the majority label, on mistake we know remove at least half the hypotheses:

$$|\mathcal{H}_i| \leq |\mathcal{H}_{i-1}| 2^{-\mathbb{I}[\hat{y}_i \neq y_i]},$$

which by induction gives

$$1 = |\{\bar{h}\}| \le |\mathcal{H}_t| \le |\mathcal{H}_0| \prod_{i=1}^t 2^{-\mathbb{1}[\hat{y}_i \neq y_i]} = |\mathcal{H}| 2^{-\sum_{i=1}^t \mathbb{1}[\hat{y}_i \neq y_i]},$$

which rearranges to give the desired bound.

2. Winnow.

Remark (comparison to Perceptron). Suppose linear separability: $\exists \bar{u}, \gamma$ such that $\|\bar{u}\| = 1$ and $\inf_i \langle \bar{u}, x_i y_i \rangle \geq \gamma > 0$, and $\sup_i \|x_i y_i\| \leq 1$. Recall that perceptron makes at most $1/\gamma^2$ mistakes, and uses $\mathcal{O}(d)$ computation per round.

For CONSISTENT and HALVING, it suffices to choose \mathcal{H} to be (the linear predictors corresponding to) a cover \mathcal{W} of $\{w \in \mathbb{R}^d : \|w\| = 1\}$ at scale $\gamma/2$, since

 $\inf_{w \in \mathcal{W}} \inf_{i} \langle w, x_{i} y_{i} \rangle = \inf_{w \in \mathcal{W}} \inf_{i} \langle \bar{u}, x_{i} y_{i} \rangle + \langle w - \bar{u}, x_{i} y_{i} \rangle \ge \inf_{w \in \mathcal{W}} \inf_{i} \gamma - \|w - \bar{u}\| \cdot \|w - \bar{u}\| \cdot$

Thus $|\mathcal{H}| = \mathcal{O}(1/\gamma)^d$, thus CONSISTENT and HALVING respectively make $\mathcal{O}(1/\gamma)^d$ and $\mathcal{O}(d \lg(1/\gamma))$ mistakes, but both have $\mathcal{O}(1/\gamma)^d$ computation. Also, they must guess γ , for instance with a double (halving) trick.

Now let's suppose the prefect predictor is a logical or of k elements of \mathcal{H} : $\bar{h}(x) = h_{i_1} \vee \cdots \vee h_{i_k}$.

- ▶ We can using HALVING and make only k ln(d) mistakes, but we still spend O(d^k) computation.
- Let's make an algorithm which maintains a candidate set of disjunction terms (initially everything). On iteration i:
 - If $y_i = -1$, remove any *h* which (mistakenly) output +1.
 - If y_i = +1, we can't be wrong (we started with everything, and never incorrectly remove), and we shouldn't remove anything.

Even if k = 1, this can unfortunately take d - 1 not $\mathcal{O}(\ln(d))$ mistakes: suppose the target disjunction is just $h_n(x)$, but the sequence of inputs is $(\mathbf{e}_1, \mathbf{e}_2, \ldots)$, all with label -1.

Winnow will get roughly the same mistake bound as HALVING, while simultaneously being computationally efficient. One of its tricks is to maintain a linear predictor rather than a disjunction.

Remark. Methods that learn a hypothesis outside the target class are called **improper**.

WINNOW.

- 1. Initialize $w_j = 1$ for $j \in [d]$.
- 2. For $i \in \{1, 2, ...\}$:
 - 2.1 Receive x_i , predict $\hat{y}_i := \operatorname{sgn}(\sum_j w_j h_j(x_i) d)$.
 - 2.2 Receive y_i ; if $y_i \neq \hat{y}_i$, update w:

$$w_j := egin{cases} 2w_j \mathbbm{1}[y_i = +1] & h_j(x_i) = +1 \ w_j & h_j(x_i) = 0. \end{cases}$$

(Note, $h_j(x) \in \{0, 1\}$.)

Theorem. If $(\hat{y}_i)_{i\geq 1}$ are computed by WINNOW,

$$\sum_{i\geq 1} \mathbb{1}[y_i \neq \hat{y}_i] \leq 1 + 2k \lceil \lg d \rceil.$$

Proof.

- ► Each mistake when y = +1 doubles w_j for some true disjunction term h_j, and they are never decreased when y = -1; together, mistake on y = +1 can happen at most r[lg(d)] times.
- Each mistake when y = −1 has ∑_{j:hj(x)=1} = ∑_j w_jh_j(x) > d, thus ||w||₁ decreases by at least d. Initially, ||w||₁ = d, and each (of at most P ≤ r [lg(d)]) mistakes on positive add at most d, so the number of mistakes on negative, N, can not decrease ||w||₁ below 0, and so N ≤ 1 + P.

Remark. This simple proof for disjunctions is by Avrim Blum. In class I discussed learning linear predictors (not just disjunctions), but the math is messy.