
Lecture 10. (Sketch.)

Today we’ll cover “online concept learning”.
I This is a classical online setting where the vector we receive xi ,

but then work only with the evaluations of some
hypothesis/concept set H:

(h1(xi ), h2(xi ), . . . , hd (xi )) ∈ {0, 1}d .

(Sometimes it’s {-1,+1}ˆd.)
I Sometimes these predictors are called “experts”, and

sometimes we assume there is a perfect expert, meaning
∃h ∈ H with h(xi ) = yi for all i .

[ I discussed a few things at the start of lecture which I’ll omit here,
for instance a guarantee for Perceptron in the nonseparable case. ]

1. Two baseline methods.

Consider the setting that ∃h̄ ∈ H, h̄(xi ) = yi for all i . This means
that each iteration can permanently ignore any h ∈ H which makes
any mistakes.

Consistent.

1. Initialize H0 = H.
2. For i ∈ {1, 2, . . .}:

2.1 Receive xi .

2.2 Choose any hi ∈ Hi−1, output ŷi := hi (xi ).

2.3 Receive yi , construct Hi :

Hi :=
{
Hi−1 ŷi = yi ,

Hi−1 \ {hi} ŷi 6= yi .

Theorem. If ∃h̄, h̄(xi ) = yi , and (ŷi )i≥1 are output by
Consistent, ∑

i≥1
1[ŷi 6= yi ] ≤ |H| − 1.

Proof. By the update rule for Hi ,

|Hi | = |Hi−1| − 1[ŷi 6= yi ]

which rearranges to give 1[ŷi 6= yi ] ≤ |Hi−1| − |Hi |. Applying
∑

i≤t
to both sides,

∑

i≤t
1[ŷi 6= yi ] =

∑

i≤t

(|Hi−1| − |Hi |
)

= |H0| − |Hn|

≤ |H| − |{h̄}| = |H| − 1.

Rather than removing only one hypothesis, we can remove all
hypotheses that make a mistake on xi .

In general, the subset of H which is consistent with all examples
seen up through time i , meaning ((xj , yj))j≤i , is called the version
space: specifically,

{
h ∈ H : ∀j ≤ i � h(xi ) = yi

}
.

We can update Consistent to remove more hypotheses, but
without another change we can still guarantee only
|Hi | ≤ |Hi−1| − 1[ŷi 6= yi ].



We can remove more hypotheses by choosing hi more carefully.

Halving.

1. Initialize version space H0 = H.
2. For i ∈ {1, 2, . . .}:

2.1 Receive xi .

2.2 Choose majority label:

ŷi := arg max
y

∣∣∣
{

h ∈ H : h(xi ) = y
}∣∣∣ .

2.3 Receive yi , update version space Hi :

Hi :=
{

h ∈ Hi−1 : h(xi ) = yi
}
.

Theorem. If ∃h̄, h̄(xi ) = yi , and (ŷi )i≥1 are output by Halving,
∑

i≥1
1[ŷi 6= yi ] ≤ lg |H|.

Proof. Since we chose the majority label, on mistake we know
remove at least half the hypotheses:

|Hi | ≤ |Hi−1|2−1[ŷi 6=yi ],

which by induction gives

1 = |{h̄}| ≤ |Ht | ≤ |H0|
t∏

i=1
2−1[ŷi 6=yi ] = |H|2−

∑t
i=1 1[ŷi 6=yi ],

which rearranges to give the desired bound.

Remark (comparison to Perceptron). Suppose linear separability:
∃ū, γ such that ‖ū‖ = 1 and inf i 〈ū, xiyi〉 ≥ γ > 0, and
supi ‖xiyi‖ ≤ 1. Recall that perceptron makes at most 1/γ2

mistakes, and uses O(d) computation per round.

For Consistent and Halving, it suffices to choose H to be (the
linear predictors corresponding to) a cover W of
{w ∈ Rd : ‖w‖ = 1} at scale γ/2, since

inf
w∈W

inf
i
〈w , xiyi〉 = inf

w∈W
inf

i
〈ū, xiyi〉+〈w − ū, xiyi〉 ≥ inf

w∈W
inf

i
γ−‖w−ū‖·‖xiyi‖ ≥ γ/2.

Thus |H| = O(1/γ)d , thus Consistent and Halving
respectively make O(1/γ)d and O(d lg(1/γ)) mistakes, but both
have O(1/γ)d computation. Also, they must guess γ, for instance
with a double (halving) trick.

2. Winnow.

Now let’s suppose the prefect predictor is a logical or of k elements
of H: h̄(x) = hi1 ∨ · · · ∨ hik .
I We can using Halving and make only k ln(d) mistakes, but

we still spend O(dk) computation.
I Let’s make an algorithm which maintains a candidate set of

disjunction terms (initially everything). On iteration i :
I If yi = −1, remove any h which (mistakenly) output +1.
I If yi = +1, we can’t be wrong (we started with everything, and

never incorrectly remove), and we shouldn’t remove anything.

Even if k = 1, this can unfortunately take d − 1 not O(ln(d))
mistakes: suppose the target disjunction is just hn(x), but the
sequence of inputs is (e1, e2, . . .), all with label −1.



Winnow will get roughly the same mistake bound as Halving,
while simultaneously being computationally efficient. One of its
tricks is to maintain a linear predictor rather than a disjunction.

Remark. Methods that learn a hypothesis outside the target class
are called improper.

Winnow.

1. Initialize wj = 1 for j ∈ [d ].

2. For i ∈ {1, 2, . . .} :
2.1 Receive xi , predict ŷi := sgn(

∑
j wjhj(xi )− d).

2.2 Receive yi ; if yi 6= ŷi , update w :

wj :=
{
2wj1[yi = +1] hj(xi ) = +1,
wj hj(xi ) = 0.

(Note, hj(x) ∈ {0, 1}.)

Theorem. If (ŷi )i≥1 are computed by Winnow,
∑

i≥1
1[yi 6= ŷi ] ≤ 1 + 2kdlg de.

Proof.
I Each mistake when y = +1 doubles wj for some true

disjunction term hj , and they are never decreased when
y = −1; together, mistake on y = +1 can happen at most
rdlg(d)e times.

I Each mistake when y = −1 has ∑j:hj (x)=1 = ∑
j wjhj(x) > d ,

thus ‖w‖1 decreases by at least d . Initially, ‖w‖1 = d , and
each (of at most P ≤ rdlg(d)e) mistakes on positive add at
most d , so the number of mistakes on negative, N, can not
decrease ‖w‖1 below 0, and so N ≤ 1 + P.

Remark. This simple proof for disjunctions is by Avrim Blum. In
class I discussed learning linear predictors (not just disjunctions),
but the math is messy.


