Lecture 10. (Sketch.)

Today we'll cover “online concept learning”.

» This is a classical online setting where the vector we receive x;,
but then work only with the evaluations of some
hypothesis/concept set H:

(hl(X,'), hQ(X,'), ceey hd(X,')) S {0, l}d.

(Sometimes it's {-1,+1}"d.)

» Sometimes these predictors are called “experts”, and
sometimes we assume there is a perfect expert, meaning
dh € H with h(x;) = y; for all /.

[ | discussed a few things at the start of lecture which I'll omit here,
for instance a guarantee for Perceptron in the nonseparable case. |

1. Two baseline methods.

Consider the setting that 3h € H, h(x;) = y; for all i. This means
that each iteration can permanently ignore any h € H which makes
any mistakes.

CONSISTENT.
1. Initialize Hg = H.
2. Forie{1,2,...}:
2.1 Receive x;.
2.2 Choose any h; € H;_1, output ¥; := h;(x;).
2.3 Receive y;, construct H;:

Y, = Hi-1 )7i =Y
Hii \{hi} ¥ # yi.

Theorem. If 3h, B(x,-) =y;, and (¥;)i>1 are output by
CONSISTENT,

S # vl < [H[ -1
i>1

Proof. By the update rule for H;,
(Hil = [Hiza| — 1[§i # yi

which rearranges to give 1[§; # yi] < |H;-1] — [H;|. Applying >=;,
to both sides,

SO # yil = (1Hieal — |Hil) = [Hol — |Hal

i<t i<t

< M|~ [{R}| = M| — 1.

Rather than removing only one hypothesis, we can remove all
hypotheses that make a mistake on x;.

In general, the subset of H which is consistent with all examples
seen up through time i, meaning ((x;, yj))j<i, is called the version
space: specifically,

{hEH . ngl.h(X,):y,}

We can update CONSISTENT to remove more hypotheses, but
without another change we can still guarantee only

(Hi| < |[Hi-a| = 1% # yi]-




We can remove more hypotheses by choosing h; more carefully.
HALVING.
1. Initialize version space Ho = H.
2. Forie{1,2,...}:
2.1 Receive x;.

2.2 Choose majority label:

{he?—[:h(x,-):y}‘.

Vi »= arg max
y

2.3 Receive y;, update version space H;:

H,‘ = {h S H,'_l . h(X,') = y,} .

Theorem. If 3h, l_v(x,-) =y;, and (¥;)i>1 are output by HALVING,

S0y # il < lg M.

i>1

Proof. Since we chose the majority label, on mistake we know
remove at least half the hypotheses:

[Hil < |[Hia|27 0,

which by induction gives

t . )
1= [{R}] < [He| < [Ho| [T 27 0] = |pj2— i 101,

i=1

which rearranges to give the desired bound.

Remark (comparison to Perceptron). Suppose linear separability:
3, vy such that ||o]| =1 and inf; (G, x;y;) > v > 0, and

sup; ||xiyi]| < 1. Recall that perceptron makes at most 1/~2
mistakes, and uses O(d) computation per round.

For CONSISTENT and HALVING, it suffices to choose H to be (the
linear predictors corresponding to) a cover W of
{weR?:||w| =1} at scale v/2, since

inf inf (w,x;y;) = inf inf (4, x;jy;)+{w — 4, x;y;) > inf/vir]fy—Hw—BH-
we 1

wew i weWw i

Thus |H| = O(1/~)9, thus CONSISTENT and HALVING
respectively make O(1/4)9 and O(d Ig(1/)) mistakes, but both
have O(1/v)? computation. Also, they must guess +, for instance
with a double (halving) trick.

2. Winnow.

Now let’s suppose the prefect predictor is a logical or of k elements
of H: h(X) = h,'1 VeV h,'k.

» We can using HALVING and make only kIn(d) mistakes, but
we still spend O(d*) computation.

» Let's make an algorithm which maintains a candidate set of
disjunction terms (initially everything). On iteration i:

» If y; = —1, remove any h which (mistakenly) output +1.

> If y; = +1, we can't be wrong (we started with everything, and
never incorrectly remove), and we shouldn't remove anything.

Even if k = 1, this can unfortunately take d — 1 not O(In(d))
mistakes: suppose the target disjunction is just h,(x), but the
sequence of inputs is (eg, ey, . ..), all with label —1.




Winnow will get roughly the same mistake bound as HALVING,
while simultaneously being computationally efficient. One of its
tricks is to maintain a linear predictor rather than a disjunction.

Remark. Methods that learn a hypothesis outside the target class
are called improper.

WINNOW.
1. Initialize w; =1 for j € [d].
2. Forie{1,2,...}:
2.1 Receive x;, predict §; := sgn(>_; w;h;(x;) — d).
2.2 Receive y;; if y; # ¥;, update w:
w {2Wj]1[y,- = +1] hi(x) = +1,
Wj hi(xi) = 0.

(Note, hj(x) € {0,1}.)

Theorem. If (§;);>1 are computed by WINNOW,

D 1y # 9] < 1+ 2k[lgd].

i>1

Proof.

» Each mistake when y = +1 doubles w; for some true
disjunction term h;, and they are never decreased when
y = —1; together, mistake on y = 41 can happen at most
r[lg(d)] times.

> Each mistake when y = —1 has 37, (-1 = 22 wjhi(x) > d,
thus ||w/||1 decreases by at least d. Initially, ||w||; = d, and
each (of at most P < r[lg(d)|) mistakes on positive add at
most d, so the number of mistakes on negative, N, can not
decrease ||w||; below 0, and so N <1+ P.

Remark. This simple proof for disjunctions is by Avrim Blum. In
class | discussed learning linear predictors (not just disjunctions),
but the math is messy.




