Lecture 11. (Sketch.)

- Today we'll cover gradient descent of smooth objectives.
- We'll introduce some convexity along the way.
- Some good references:
- Optimization: "Convex optimization: algorithms \& complexity" by Sebastien Bubeck; "Introductory lectures on convex optimization", Yurii Nesterov; "Fundamentals of Convex Analysis", Claude Lemarechal and Jean-Baptiste Hiriart-Urruty.
- Note: I've added a homework problem.

Proof of smoothness inequality.

$$
\begin{aligned}
& |f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \\
& =\left|\int_{0}^{1}\langle\nabla f(x+t(y-x)), y-x\rangle \mathrm{d} t-\langle\nabla f(x), y-x\rangle\right| \\
& \leq \int_{0}^{1}|\langle\nabla f(x+t(y-x))-\nabla f(x), y-x\rangle| \mathrm{d} t \\
& \leq \int_{0}^{1}\|\nabla f(x+t(y-x))-\nabla f(x)\| \cdot\|y-x\| \mathrm{d} t \\
& \leq \int_{0}^{1} t \beta\|y-x\|^{2} \mathrm{~d} t \\
& =\frac{\beta}{2}\|y-x\|^{2} .
\end{aligned}
$$

1. Smooth objectives in ML.

- We say " f is β-smooth" to mean β-Lipschitz gradients:

$$
\|\nabla f(x)-\nabla f(y)\| \leq \beta\|x-y\| .
$$

(The math community says "smooth" for C^{∞}.)

- We primarily invoke smoothness via the key inequality

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\beta}{2}\|y-x\|^{2} .
$$

The right hand side is a quadratic which upper bounds f, and shares function values and gradients with f at x. In words: for any point x, there exists a quadratic function

Example: least squares.

Define $f(w):=\frac{1}{2}\|X w-y\|^{2}$, and note $\nabla f(w)=X^{\top}(X w-y)$. For any w, w^{\prime},

$$
\begin{aligned}
f\left(w^{\prime}\right) & =\frac{1}{2}\left\|X w^{\prime}-X w+X w-y\right\|^{2} \\
& =\frac{1}{2}\left\|X w^{\prime}-X w\right\|^{2}+\left\langle X w^{\prime}-X w, X w-y\right\rangle+\frac{1}{2}\|X w-y\|^{2} \\
& =\frac{1}{2}\left\|X w^{\prime}-X w\right\|^{2}+\left\langle w^{\prime}-w, \nabla f(w)\right\rangle+f(w) .
\end{aligned}
$$

- Since $\frac{\sigma_{\text {min }}(X)}{2}\left\|w^{\prime}-w\right\|^{2} \leq \frac{1}{2}\left\|X w^{\prime}-X w\right\|^{2} \leq \frac{\sigma_{\max }(X)}{2}\left\|w^{\prime}-w\right\|^{2}$, thus f is $\sigma_{\max }(X)$-smooth (and $\sigma_{\text {min }}$-strongly-convex, as we'll discuss).
- The smoothness bound holds with equality if we use the seminorm $\|v\|_{X}=\|X v\|$. We'll discuss smoothness wrt other norms in homework.

2. Convergence of gradient descent to critical points.

Define the gradient iteration

$$
w^{\prime}:=w-\eta \nabla f(w)
$$

where $\eta \geq 0$ is the step size. When f is β smooth but not necessarily convex, the smoothness inequality directly gives

$$
\begin{aligned}
f\left(w^{\prime}\right) & \leq f(w)+\left\langle\nabla f(w), w^{\prime}-w\right\rangle+\frac{\beta}{2}\left\|w^{\prime}-w\right\|^{2} \\
& =f(w)-\eta\|\nabla f(w)\|^{2}+\frac{\beta \eta^{2}}{2}\|\nabla f(w)\|^{2} \\
& =f(w)-\eta\left(1-\frac{\beta \eta}{2}\right)\|\nabla f(w)\|^{2} .
\end{aligned}
$$

If we choose η appropriately $(\eta \leq 2 / \beta)$ then: either we are near a critical point $(\nabla f(w) \approx 0)$, or we can decrease f.

Let's refine our notation to tell iterates apart:

1. Let w_{0} be given.
2. Recurse: $w_{i}:=w_{i-1}-\eta_{i} \nabla f\left(w_{i-1}\right)$.

Rearranging our iteration inequality and summing over $i<t$,

$$
\begin{aligned}
\sum_{i<t} \eta_{i+1}\left(1-\frac{\beta \eta_{i+1}}{2}\right)\left\|\nabla f\left(w_{i}\right)\right\|^{2} & \leq \sum_{i<t}\left(f\left(w_{i}\right)-f\left(w_{i+1}\right)\right) \\
& =\left(f\left(w_{0}\right)-f\left(w_{t}\right)\right)
\end{aligned}
$$

We can summarize these observations in the following theorem.

Theorem. Let $\left(w_{i}\right)_{i \geq 0}$ be given by gradient descent on β-smooth f.

- If $\eta \in[0,2 / \beta]$, then $f\left(w_{i+1}\right) \leq f\left(w_{i}\right)$.
- If $\eta:=1 / \beta$, then

$$
\begin{aligned}
\min _{i<t}\|\nabla f(w)\|^{2} & \leq \frac{1}{t} \sum_{i<t}\|\nabla f(w)\|^{2} \leq \frac{2 \beta}{t}\left(f\left(w_{0}\right)-f\left(w_{t}\right)\right) \\
& \leq \frac{2 \beta}{t}\left(f\left(w_{0}\right)-\inf _{w} f(w)\right) .
\end{aligned}
$$

Remarks.

- We have no guarantee about the last iterate $\left\|\nabla f\left(w_{t}\right)\right\|$: we may get near a flat region at some $i<t$, but thereafter bounce out.
- This derivation is at the core of many papers with a "local optimization" (critical point) guarantee for gradient descent.
- The gradient iterate with step size $1 / \beta$ is the result of minimizing the quadratic provided by smoothness:
$w-\frac{1}{\beta} \nabla f(w)=\underset{w^{\prime}}{\arg \min }\left(f(w)+\left\langle\nabla f(w), w^{\prime}-w\right\rangle+\frac{\beta}{2}\left\|w^{\prime}-w\right\|^{2}\right)$

Remarks (continued).

- In t iterations, we found a point w with $\|\nabla f(w)\| \leq \sqrt{2 \beta / t}$. We can do better with Nesterov-Polyak cubic regularization: by choosing the next iterate according to

$$
\begin{aligned}
\underset{w^{\prime}}{\arg \min }(& f(w)+\left\langle\nabla f(w), w^{\prime}-w\right\rangle \\
& \left.+\frac{1}{2}\left\langle\nabla^{2} f(w)^{-1}\left(w^{\prime}-w\right), w^{\prime}-w\right\rangle+\frac{L}{6}\left\|w^{\prime}-w\right\|^{3}\right)
\end{aligned}
$$

where $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\| \leq L\|x-y\|$, then after t iterations, some iterate w satisfies

$$
\|\nabla f(w)\| \leq \frac{\mathcal{O}(1)}{t^{2 / 3}}, \quad \nabla^{2} f(w) \succeq-\frac{\mathcal{O}(1)}{t^{1 / 3}}
$$

Note: it is not obvious that the above cubic can be solved efficiently, but indeed there are various ways. If we go up a few higher derivatives, it becomes NP-hard.

3. Convergence rate for smooth \& convex.

Theorem. Suppose f is β-smooth and convex, and $\left(w_{i}\right)_{\geq 0}$ given by GD with $\eta_{i}:=1 / \beta$. Then for any z,

$$
f\left(w_{t}\right)-f(z) \leq \frac{\beta}{2 t}\left(\left\|w_{0}-z\right\|^{2}-\left\|w_{t}-z\right\|^{2}\right)
$$

Remark. We only invoke convexity via the inequality

$$
f\left(w^{\prime}\right) \geq f(w)+\left\langle\nabla f(w), w^{\prime}-w\right\rangle
$$

meaning f lies above all tangents.

Remarks (continued).

- Gradient descent alone is known to avoid saddle points, see "Gradient Descent Only Converges to Minimizers" by Jason Lee, Max Simchowitz, Michael I Jordan, Ben Recht.

Proof. By convexity and the earlier smoothness inequality $\left\|\nabla f(w)^{2}\right\|^{2} \leq 2 \beta\left(f(w)-f\left(w^{\prime}\right)\right)$,

$$
\begin{aligned}
\left\|w^{\prime}-z\right\|^{2} & =\|w-z\|^{2}-\frac{2}{\beta}\langle\nabla f(w), w-z\rangle+\frac{1}{\beta^{2}}\|\nabla f(w)\|^{2} \\
& \leq\|w-z\|^{2}+\frac{2}{\beta}(f(z)-f(w))+\frac{2}{\beta}\left(f(w)-f\left(w^{\prime}\right)\right) \\
& =\|w-z\|^{2}+\frac{2}{\beta}\left(f(z)-f\left(w^{\prime}\right)\right)
\end{aligned}
$$

Rearranging and applying $\sum_{i<t}$,

$$
\frac{2}{\beta} \sum_{i<t}\left(f\left(w_{i+1}\right)-f(z)\right) \leq \sum_{i<t}\left(\left\|w_{i}-z\right\|^{2}-\left\|w_{i+1}-z\right\|^{2}\right)
$$

The final bound follows by noting $f\left(w_{i}\right) \leq f\left(w_{t}\right)$, and since the right hand side telescopes.

