
Lecture 11. (Sketch.)
I Today we’ll cover gradient descent of smooth objectives.
I We’ll introduce some convexity along the way.
I Some good references:

I Optimization: “Convex optimization: algorithms & complexity”
by Sebastien Bubeck; “Introductory lectures on convex
optimization”, Yurii Nesterov; “Fundamentals of Convex
Analysis”, Claude Lemarechal and Jean-Baptiste Hiriart-Urruty.

I Note: I’ve added a homework problem.

1. Smooth objectives in ML.
I We say “f is β-smooth” to mean β-Lipschitz gradients:

‖∇f (x)−∇f (y)‖ ≤ β‖x − y‖.

(The math community says “smooth” for C∞.)
I We primarily invoke smoothness via the key inequality

f (y) ≤ f (x) +
〈∇f (x), y − x

〉
+ β

2 ‖y − x‖2.

The right hand side is a quadratic which upper bounds f , and
shares function values and gradients with f at x . In words: for
any point x , there exists a quadratic function

Proof of smoothness inequality.
∣∣∣f (y)− f (x)− 〈∇f (x), y − x

〉∣∣∣

=
∣∣∣∣∣

∫ 1

0

〈∇f (x + t(y − x)), y − x
〉

dt − 〈∇f (x), y − x
〉
∣∣∣∣∣

≤
∫ 1

0

∣∣∣
〈∇f (x + t(y − x))−∇f (x), y − x

〉∣∣∣ dt

≤
∫ 1

0
‖∇f (x + t(y − x))−∇f (x)‖ · ‖y − x‖ dt

≤
∫ 1

0
tβ‖y − x‖2 dt

= β

2 ‖y − x‖2.

Example: least squares.
Define f (w) := 1

2‖Xw − y‖2, and note ∇f (w) = X>(Xw − y). For
any w ,w ′,

f (w ′) = 1
2‖Xw ′ − Xw + Xw − y‖2

= 1
2‖Xw ′ − Xw‖2 +

〈
Xw ′ − Xw ,Xw − y

〉
+ 1

2‖Xw − y‖2

= 1
2‖Xw ′ − Xw‖2 +

〈
w ′ − w ,∇f (w)

〉
+ f (w).

I Since σmin(X)
2 ‖w ′−w‖2 ≤ 1

2‖Xw ′−Xw‖2 ≤ σmax(X)
2 ‖w ′−w‖2,

thus f is σmax(X )-smooth (and σmin-strongly-convex, as we’ll
discuss).

I The smoothness bound holds with equality if we use the
seminorm ‖v‖X = ‖Xv‖. We’ll discuss smoothness wrt other
norms in homework.



2. Convergence of gradient descent to critical points.
Define the gradient iteration

w ′ := w − η∇f (w),

where η ≥ 0 is the step size. When f is β smooth but not
necessarily convex, the smoothness inequality directly gives

f (w ′) ≤ f (w) +
〈
∇f (w),w ′ − w

〉
+ β

2 ‖w
′ − w‖2

= f (w)− η‖∇f (w)‖2 + βη2

2 ‖∇f (w)‖2

= f (w)− η
(
1− βη

2

)
‖∇f (w)‖2.

If we choose η appropriately (η ≤ 2/β) then: either we are near a
critical point (∇f (w) ≈ 0), or we can decrease f .

Let’s refine our notation to tell iterates apart:

1. Let w0 be given.

2. Recurse: wi := wi−1 − ηi∇f (wi−1).

Rearranging our iteration inequality and summing over i < t,

∑

i<t
ηi+1

(
1− βηi+1

2

)
‖∇f (wi)‖2 ≤

∑

i<t

(
f (wi)− f (wi+1)

)

=
(
f (w0)− f (wt)

)

We can summarize these observations in the following theorem.

Theorem. Let (wi)i≥0 be given by gradient descent on β-smooth f .
I If η ∈ [0, 2/β], then f (wi+1) ≤ f (wi).
I If η := 1/β, then

min
i<t
‖∇f (w)‖2 ≤ 1

t
∑

i<t
‖∇f (w)‖2 ≤ 2β

t
(
f (w0)− f (wt)

)

≤ 2β
t

(
f (w0)− inf

w
f (w)

)
.

Remarks.
I We have no guarantee about the last iterate ‖∇f (wt)‖: we

may get near a flat region at some i < t, but thereafter bounce
out.

I This derivation is at the core of many papers with a “local
optimization” (critical point) guarantee for gradient descent.

I The gradient iterate with step size 1/β is the result of
minimizing the quadratic provided by smoothness:

w− 1
β
∇f (w) = arg min

w ′

(
f (w) +

〈
∇f (w),w ′ − w

〉
+ β

2 ‖w
′ − w‖2

)
.



Remarks (continued).
I In t iterations, we found a point w with ‖∇f (w)‖ ≤

√
2β/t.

We can do better with Nesterov-Polyak cubic regularization: by
choosing the next iterate according to

arg min
w ′

(
f (w) +

〈
∇f (w),w ′ − w

〉

+ 1
2
〈
∇2f (w)−1(w ′ − w),w ′ − w

〉
+ L

6‖w
′ − w‖3

)

where ‖∇2f (x)−∇2f (y)‖ ≤ L‖x − y‖, then after t iterations,
some iterate w satisfies

‖∇f (w)‖ ≤ O(1)
t2/3 , ∇2f (w) � −O(1)

t1/3 .

Note: it is not obvious that the above cubic can be solved
efficiently, but indeed there are various ways. If we go up a few
higher derivatives, it becomes NP-hard.

Remarks (continued).
I Gradient descent alone is known to avoid saddle points, see

“Gradient Descent Only Converges to Minimizers” by Jason Lee,
Max Simchowitz, Michael I Jordan, Ben Recht.

3. Convergence rate for smooth & convex.
Theorem. Suppose f is β-smooth and convex, and (wi)≥0 given by
GD with ηi := 1/β. Then for any z ,

f (wt)− f (z) ≤ β

2t
(
‖w0 − z‖2 − ‖wt − z‖2

)
.

Remark. We only invoke convexity via the inequality

f (w ′) ≥ f (w) +
〈
∇f (w),w ′ − w

〉
,

meaning f lies above all tangents.

Proof. By convexity and the earlier smoothness inequality
‖∇f (w)2‖2 ≤ 2β(f (w)− f (w ′)),

‖w ′ − z‖2 = ‖w − z‖2 − 2
β

〈∇f (w),w − z
〉

+ 1
β2 ‖∇f (w)‖2

≤ ‖w − z‖2 + 2
β

(f (z)− f (w)) + 2
β

(f (w)− f (w ′))

= ‖w − z‖2 + 2
β

(f (z)− f (w ′)).

Rearranging and applying ∑i<t ,

2
β

∑

i<t
(f (wi+1)− f (z)) ≤

∑

i<t

(
‖wi − z‖2 − ‖wi+1 − z‖2

)

The final bound follows by noting f (wi) ≤ f (wt), and since the
right hand side telescopes.


