Lecture 11. (Sketch.)
» Today we'll cover gradient descent of smooth objectives.
» We'll introduce some convexity along the way.

» Some good references:

» Optimization: “Convex optimization: algorithms & complexity”

by Sebastien Bubeck; “Introductory lectures on convex
optimization”, Yurii Nesterov; “Fundamentals of Convex

Analysis”, Claude Lemarechal and Jean-Baptiste Hiriart-Urruty.

» Note: |I've added a homework problem.

1. Smooth objectives in ML.
» We say “f is B-smooth” to mean [-Lipschitz gradients:
IVE(x) = VI < Blix = yl|.
(The math community says “smooth” for C*.)

» We primarily invoke smoothness via the key inequality
g
Fy) < )+ (VI(x),y =x) + Slly = x|12.
The right hand side is a quadratic which upper bounds f, and

shares function values and gradients with f at x. In words: for
any point x, there exists a quadratic function

Proof of smoothness inequality.

F(y) = F(x) = (VF(x),y = %)

/01 (VI(x + t(y — x)),y —x)dt = (VF(x),y — x)

< [Jortces ity —x)) — 9700,y )
< [FI9FGc+ tly =) = TE -y —

1
< /0 t8]ly — x| dt

= Sl = I

Example: least squares.
Define f(w) := [ Xw — y||, and note Vf(w) = XT (Xw — y). For
any w, w/,
! 1 / 2
f(w) = §||XW — Xw + Xw — y||
1 1
= EHXW/ — Xw|?> + <XW’ — Xw, Xw — y> + EHXW —yIP

1
— EHXWI — Xwl]® + <W' —w, Vf(w)> + f(w).

> Since ZmaX) ||/ — w2 < 1| Xw — Xw |2 < 22X ||w/ — w2,
thus f is omax(X)-smooth (and omi-strongly-convex, as we'll
discuss).

» The smoothness bound holds with equality if we use the
seminorm ||v||x = || Xv||. We'll discuss smoothness wrt other
norms in homework.




2. Convergence of gradient descent to critical points.

Define the gradient iteration
w' = w —nVf(w),

where 1 > 0 is the step size. When f is § smooth but not
necessarily convex, the smoothness inequality directly gives

s
—w) + S —wi?

F(w') < F(w) + (VF(w),w'

= f(w) — | VF(w)|? + 6" IV F(w)|?

— f(w) - n(l—ﬁn> V()|

If we choose 7 appropriately (n < 2/f) then: either we are near a
critical point (Vf(w) ~ 0), or we can decrease f.

Let's refine our notation to tell iterates apart:
1. Let wy be given.
2. Recurse: w; := wj_1 —n;Vf(w_1).
Rearranging our iteration inequality and summing over / < t,

Z’fhﬂ (1 — 577:+1) IVF(wi)]? < Z (wi) — f(wit1))

= (f(wo) — f(wr))

We can summarize these observations in the following theorem.

Theorem. Let (w;)i>o be given by gradient descent on $-smooth f.

> If n€[0,2/0], then f(wj11) < f(w;).
> If n:=1/p3, then

min | VF(w)| < Zuw (w)|]? < (f(WO)_f(Wf))

< zf (f(wo) ~ inf f(w)> .

Remarks.

» We have no guarantee about the last iterate |V (w;)]: we

may get near a flat region at some i < t, but thereafter bounce
out.

» This derivation is at the core of many papers with a “local
optimization” (critical point) guarantee for gradient descent.

» The gradient iterate with step size 1/4 is the result of
minimizing the quadratic provided by smoothness:

w—;Vf(W) = argwr/nin <f(w) + <Vf(w)7 w — W> + g”W/ _ W||2)




Remarks (continued).

» In t iterations, we found a point w with |Vf(w)| < /26/t
We can do better with Nesterov-Polyak cubic regularization: by
choosing the next iterate according to

arg min (f(w) + <Vf(w), w' — W>

1 2 -1 / ! L / 3
45 (V20 L = w)w' = w) + gl = wiP)

where ||V2f(x) — V2f(y)|| < L||x — y||, then after t iterations,

some iterate w satisfies

O(1)
/3

0(1)
t1/3 ’

IVE(w)]| < V2 (w) = —
Note: it is not obvious that the above cubic can be solved
efficiently, but indeed there are various ways. If we go up a few
higher derivatives, it becomes NP-hard.

Remarks (continued).

» Gradient descent alone is known to avoid saddle points, see
“Gradient Descent Only Converges to Minimizers" by Jason Lee,
Max Simchowitz, Michael | Jordan, Ben Recht.

3. Convergence rate for smooth & convex.

Theorem. Suppose f is 3-smooth and convex, and (w;)>¢ given by
GD with n; :=1/3. Then for any z,

Fwe) — £(2) < 2 (1o — 2l — we — 2IP).

Remark. We only invoke convexity via the inequality

F(w') > F(w) + (VF(w),w — w),

meaning f lies above all tangents.

Proof. By convexity and the earlier smoothness inequality

IVF(w)?[? < 28(F(w) — f(w")),

W' — 2| = |w — 2|2 - §<Vf( )+ 2||Vf(w)||2
—Zz 2 g Z)— w g w) — W/
< w2l + S(F(2) — F(w) + 5 (F(w) = F(w)

— w—z|? + §(f<z) ~ F(w)).

Rearranging and applying > ;..
52 (Wit1) — f(z <Z(|w,—z\| —HW1+1—ZH)
i<t I<t

The final bound follows by noting f(w;) < f(w;), and since the
right hand side telescopes.




