
Lecture 12. (Sketch.)
I Reminder: hwk1 due Wednesday, 3pm. No late homework

accepted; answers discussed at start of class.

1. Smoothness recap.
I Definition: f is β-smooth (has β-Lipschitz gradients) when

‖∇f (x)−∇f (y)‖ ≤ β‖x − y‖ ∀x , y .

I Key inequality/consequence:
∣∣∣f (x)− f (y)− 〈∇f (x), y − x

〉∣∣∣ ≤ β

2 ‖x − y‖2 ∀x , y .

I Interpretation / usefulness:
I The key inequality tells us that at any point we can form convex

and concave quadratics which respectively upper and lower
bound the function.

I Smoothness means we can take large gradient descent steps and
still expect to decrease in function value.

I GD Rates: with t iterations,
1. f β-smooth implies

min
i<t
‖∇f (wi )‖2 ≤ 2β

t (f (w0)− f (wt)).

2. f β-smooth and convex implies

∀z � f (wt)− f (z) ≤ β

2t
(
‖wt − z‖2 − ‖w0 − z‖2

)
.

Remark (large steps).

Consider the gradient flow (GF) iteration: w(0) ∈ Rd is given, and
w ′(t) := ẇ(t) := −∇f (w(t)). (Treat these as identities; to be
rigorous, we would need to argue that this differential equation has
a solution.)

Using the fundamental theorem of calculus, chain rule, and
definition,

f (w(t))− f (w(0)) =
∫ t

0

〈∇f (w(s)), ẇ(s)
〉

ds

= −
∫ t

0
‖∇f (w(s))‖ ds

≤ −t inf
s∈[0,t]

‖∇f (w(s))‖2,

which rearranges to give

inf
s∈[0,t]

‖∇f (w(s))‖2 ≤ 1
t
(
f (w(0))− f (w(t))

)



Remark (continued).

Therefore, gradient flow (small steps) avoids a factor β which
appears with gradient descent. Notice however that gradient
descent uses a step size 1/β, thus after t steps, a distance t/β has
been covered “in gradient units”. therefore β/t in the GD rates can
be related to 1/t in the GF rates.

2. Strong convexity.
Here is a sort of companion to Lipschitz gradients; a stronger
condition than convexity which will grant much faster convergence
rates.

Say that f is λ-strongly-convex (λ-sc) when

f (y) ≥ f (x) +
〈∇f (x), y − x

〉
+ λ

2 ‖y − x‖2.

Some alternative definitions:
I ∇2f � λI (β-smooth implies ∇2f � βI).
I 〈∇f (x)−∇f (y), x − y

〉 ≥ λ‖x − y‖2 (β-smooth gives
≤ β‖x − y‖2).

I f is λ-sc iff f − ‖ · ‖22/2 is convex.
I Definitions in terms of subgradients and function values also

exist.

Example (least squares).

Last lecture, we derived

1
2‖Xw

′−y‖2 =: f (w ′) = f (w)+
〈
∇f (w),w ′ − w

〉
+1
2‖Xw

′−Xw‖2

and

σmin(X )‖w ′ − w‖2 ≤ ‖Xw ′ − Xw‖2 ≤ σmax(X )‖w ′ − w‖2.

The latter implies smoothness, now we know the former implies
strong convexity. (We can also say that both hold with equality
using the special seminorm ‖v‖X = ‖Xv‖.) We can also verify these
properties by noting ∇2f = X>X .

Example (regularization).

Often in ML, f is some risk we care about, but we train
g(w) := f (w) + λ‖w‖2/2.
If f is convex, then g is λ-sc:
I A quick check is that if f is twice-differentiable, then
∇2g = ∇2f + λI � 0 + λI.

I Alternatively, it also follows by summing the inequalities

f (w ′) ≥ f (w) +
〈
∇f (w),w ′ − w

〉
,

λ‖w ′‖2/2 = λ‖w‖2/2 +
〈
λw ,w ′ − w

〉
+ λ‖w ′ − w‖2/2.



Another very useful property is that λ-sc gives a way to convert
gradient norms to suboptimality.

Lemma. Suppose f is λ-sc. Then

∀w � f (w)− inf
v
f (v) ≤ 1

2λ‖∇f (w)‖2.

Proof. Let w be given, and define the convex quadratic

Qw (v) := f (w) +
〈∇f (w), v − w

〉
+ λ

2 ‖v − w‖2,

which attains its minimum at v̄ := w −∇f (w)/λ. By definition
λ-sc,

inf
v
f (v) ≥ inf

v
Qw (v) = Qw (v̄) = f (w)− 1

2λ‖∇f (w)‖2.

Remark (stopping conditions).

Say our goal is to find w so that f (w)− infv f (v) ≤ ε. When do we
stop gradient descent? It is a pain in general and black box solvers
use lots of heuristics.
I The λ-sc case is easy: by the preceding lemma, we know that

we can stop when ‖∇f (w)‖ ≤
√
2λε.

I Another easy case is when infv f (v) is known, and we just keep
recomputing f (w). This is generally the case for neural
networks (where we assume infv f (v) = 0, which often holds).

I In general though, we don’t have a nice way to do it; the usual
library heuristics (checking ‖∇f (w)‖ without strong convexity,
checking for f (wt)− f (wt−1), and many other things) all stop
prematurely in some cases.

The only gold standard is to use duality gaps, but these can be
computationally infeasible.

3. Rates when strongly convex and smooth.
Theorem. Suppose f is λ-sc and β-smooth, and GD is run with
step size 1/β. Then a minimum w̄ exists, and

f (wt)− f (w̄) ≤ (f (w0)− f (w̄)
)

exp(−tλ/β),
‖wt − w̄‖2 ≤ ‖w0 − w̄‖2 exp(−tλ/β).

Proof. Using previously-proved Lemmas from smooothness and
strong convexity,

f (wi+1)− f (w̄) ≤ f (wi )− f (w̄)− ‖∇f (wi )‖2
2β

≤ f (wi )− f (w̄)− 2λ(f (wi )− f (w̄))
2β

≤ (f (wi )− f (w̄)
) (

1− λ/β) ,
which gives the first bound by induction since

∏

i<t
(1− λ/β) ≤

∏

i<t
exp

(−λ/β) = exp
(−tλ/β) .

Proof (continued).

For the second guarantee, expanding the square as usual,

‖w ′ − w̄‖2 = ‖w − w̄‖2 + 2
β

〈∇f (w), w̄ − w
〉

+ 1
β2 ‖∇f (w)‖2

≤ ‖w − w̄‖2 + 2
β

(
f (w̄)− f (w)− λ

2 ‖w̄ − w‖22
)

+ 1
β2

(
2β(f (w)− f (w ′))

)

= (1− λ/β)‖w − w̄‖2 + 2
β

(
f (w̄)− f (w) + f (w)− f (w ′)

)

≤ (1− λ/β)‖w − w̄‖2,

which gives the argument after a similar induction argument as
before.



Remarks.
I β/λ is sometimes called the condition number, based on linear

system solvers, where it is σmax(X )/σmin(X ) as in least squares.
Note that β ≥ λ and a good condition numbers improves these
bounds.

I Setting the bounds to ε, it takes a linear number of iterations
to learn a linear number of bits of w̄ .

I As will be explored in homework, much of the analysis we’ve
done goes through if the norm pair (‖ · ‖2, ‖ · ‖2) is replaced
with (‖ · ‖, ‖ · ‖∗) where the latter dual norm is defined as

‖s‖∗ = sup
{〈s,w〉 : ‖w‖ ≤ 1

}
;

for instance, we can define β-smooth wrt ‖ · ‖ as

‖∇f (x)−∇f (y)‖∗ ≤ β‖x − y‖.

Remark (more on gradient flow).

Assuming f is λ-sc and again the gradient flow
ẇ(t) := −∇f (w(t)), the fact ∇f (w̄) = 0 and inequality

d
dt

1
2‖w(t)− w̄‖2 =

〈
w(t)− w̄ , ẇ(t)

〉

= − 〈w(t)− w̄ ,∇f (w(t))−∇f (w̄)
〉

≤ −λ‖w(t)− w̄‖2.

By Grönwall’s inequality, this implies

‖w(t)− w̄‖2 ≤ ‖w(0)− w̄‖2 exp(−λt),

which as before drops 1/β, but t/β in gradient descent in a sense
has the same “units” as t in gradient flow.

Remark (incomplete).

It is also interesting to replace the potential functions with

‖wt − ut‖2 and ‖w(t)− u(t)‖2,

where ut and u(t) are respectively gradient descent and gradient
flow initialized at some u0 = u(0), possible distinct from w0 = w(0).
This gives a “mixing time” style analysis (and things go through,
even if we throw in coupled randomness and give a Langevin
guarantee).


