Lecture 12. (Sketch.)

- Reminder: hwk1 due Wednesday, 3pm. No late homework accepted; answers discussed at start of class.

1. Smoothness recap.

- Definition: \(f \) is \(\beta \)-smooth (has \(\beta \)-Lipschitz gradients) when
 \[
 \| \nabla f(x) - \nabla f(y) \| \leq \beta \| x - y \| \quad \forall x, y.
 \]

- Key inequality/consequence:
 \[
 \left| f(x) - f(y) - \langle \nabla f(x), y - x \rangle \right| \leq \frac{\beta}{2} \| x - y \|^2 \quad \forall x, y.
 \]

- Interpretation / usefulness:
 - The key inequality tells us that at any point we can form convex and concave quadratics which respectively upper and lower bound the function.
 - Smoothness means we can take large gradient descent steps and still expect to decrease in function value.

GD Rates: with \(t \) iterations,

1. \(f \) \(\beta \)-smooth implies
 \[
 \min_{i < t} \| \nabla f(w_i) \|^2 \leq \frac{2\beta}{t} (f(w_0) - f(w_t)).
 \]

2. \(f \) \(\beta \)-smooth and convex implies
 \[
 \forall z, f(w_t) - f(z) \leq \frac{\beta}{2t} \left(\| w_t - z \|^2 - \| w_0 - z \|^2 \right).
 \]

Remark (large steps).

Consider the gradient flow (GF) iteration: \(w(0) \in \mathbb{R}^d \) is given, and \(w'(t) := \dot{w}(t) := -\nabla f(w(t)) \). (Treat these as identities; to be rigorous, we would need to argue that this differential equation has a solution.)

Using the fundamental theorem of calculus, chain rule, and definition,

\[
 f(w(t)) - f(w(0)) = \int_0^t \langle \nabla f(w(s)), \dot{w}(s) \rangle \, ds
 = -\int_0^t \| \nabla f(w(s)) \| \, ds
 \leq -t \inf_{s \in [0,t]} \| \nabla f(w(s)) \|^2,
\]

which rearranges to give

\[
 \inf_{s \in [0,t]} \| \nabla f(w(s)) \|^2 \leq \frac{1}{t} (f(w(0)) - f(w(t))).
\]
Remark (continued).

Therefore, gradient flow (small steps) avoids a factor β which appears with gradient descent. Notice however that gradient descent uses a step size $1/\beta$, thus after t steps, a distance t/β has been covered “in gradient units”. therefore β/t in the GD rates can be related to $1/t$ in the GF rates.

2. Strong convexity.

Here is a sort of companion to Lipschitz gradients; a stronger condition than convexity which will grant much faster convergence rates.

Say that f is λ-strongly-convex (λ-sc) when

$$f(y) \geq f(x) - \langle \nabla f(x), y - x \rangle + \frac{\lambda}{2} \|y - x\|^2.$$

Some alternative definitions:

- $\nabla^2 f \succeq \lambda I$ (β-smooth implies $\nabla^2 f \preceq \beta I$).
- $\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \lambda \|x - y\|^2$ (β-smooth gives $\leq \beta \|x - y\|^2$).
- f is λ-sc iff $f - \frac{\|\cdot\|^2}{2}$ is convex.
- Definitions in terms of subgradients and function values also exist.

Example (least squares).

Last lecture, we derived

$$\frac{1}{2} \|Xw' - y\|^2 =: f(w') = f(w) + \langle \nabla f(w), w' - w \rangle + \frac{1}{2} \|Xw' - Xw\|^2$$

and

$$\sigma_{\min}(X) \|w' - w\|^2 \leq \|Xw' - Xw\|^2 \leq \sigma_{\max}(X) \|w' - w\|^2.$$

The latter implies smoothness, now we know the former implies strong convexity. (We can also say that both hold with equality using the special seminorm $\|v\|_X = \|Xv\|$.) We can also verify these properties by noting $\nabla^2 f = X^T X$.

Example (regularization).

Often in ML, f is some risk we care about, but we train

$g(w) := f(w) + \lambda \|w\|^2/2$.

If f is convex, then g is λ-sc:

- A quick check is that if f is twice-differentiable, then $\nabla^2 g = \nabla^2 f + \lambda I \succeq 0 + \lambda I$.
- Alternatively, it also follows by summing the inequalities

$$f(w') \geq f(w) + \langle \nabla f(w), w' - w \rangle,$$

$$\lambda \|w'\|^2/2 = \lambda \|w\|^2/2 + \langle \lambda w, w' - w \rangle + \lambda \|w' - w\|^2/2.$$
Another very useful property is that λ-sc gives a way to convert gradient norms to suboptimality.

Lemma. Suppose f is λ-sc. Then

$$\forall w . \quad f(w) - \inf_v f(v) \leq \frac{1}{2\lambda} \|\nabla f(w)\|^2.$$

Proof. Let w be given, and define the convex quadratic

$$Q_w(v) := f(w) + \langle \nabla f(w), v - w \rangle + \frac{\lambda}{2} \|v - w\|^2,$$

which attains its minimum at $\bar{v} := w - \nabla f(w)/\lambda$. By definition λ-sc,

$$\inf_v f(v) \geq \inf_v Q_w(v) = Q_w(\bar{v}) = f(w) - \frac{1}{2\lambda} \|\nabla f(w)\|^2.$$

3. Rates when strongly convex and smooth.

Theorem. Suppose f is λ-sc and β-smooth, and GD is run with step size $1/\beta$. Then a minimum w exists, and

$$f(w_t) - f(\bar{w}) \leq (f(w_0) - f(\bar{w})) \exp(-t\lambda/\beta),$$

$$\|w_t - \bar{w}\|^2 \leq \|w_0 - \bar{w}\|^2 \exp(-t\lambda/\beta).$$

Proof. Using previously-proved Lemmas from smoothness and strong convexity,

$$f(w_{i+1}) - f(\bar{w}) \leq f(w_i) - f(\bar{w}) - \frac{\|\nabla f(w_i)\|^2}{2\beta}$$

$$\leq f(w_i) - f(\bar{w}) - \frac{2\lambda(f(w_i) - f(\bar{w}))}{2\beta}$$

$$\leq (f(w_i) - f(\bar{w})) (1 - \lambda/\beta),$$

which gives the first bound by induction since

$$\prod_{i \leq t} (1 - \lambda/\beta) \leq \prod_{i \leq t} \exp(-\lambda/\beta) = \exp(-t\lambda/\beta).$$

Remark (stopping conditions).

Say our goal is to find w so that $f(w) - \inf_v f(v) \leq \epsilon$. When do we stop gradient descent? It is a pain in general and black box solvers use lots of heuristics.

- The λ-sc case is easy: by the preceding lemma, we know that we can stop when $\|\nabla f(w)\| \leq \sqrt{2\lambda}\epsilon$.
- Another easy case is when $\inf_v f(v)$ is known, and we just keep recomputing $f(w)$. This is generally the case for neural networks (where we assume $\inf_v f(v) = 0$, which often holds).
- In general though, we don’t have a nice way to do it; the usual library heuristics (checking $\|\nabla f(w)\|$ without strong convexity, checking for $f(w_t) - f(w_{t-1})$, and many other things) all stop prematurely in some cases.

The only gold standard is to use duality gaps, but these can be computationally infeasible.

Proof (continued).

For the second guarantee, expanding the square as usual,

$$\|w' - \bar{w}\|^2 = \|w - \bar{w}\|^2 + \frac{2}{\beta} \langle \nabla f(w), \bar{w} - w \rangle + \frac{1}{\beta^2} \|\nabla f(w)\|^2$$

$$\leq \|w - \bar{w}\|^2 + \frac{2}{\beta} \left(f(\bar{w}) - f(w) - \frac{\lambda}{2} \|\bar{w} - w\|^2 \right)$$

$$+ \frac{1}{\beta^2} \left(2\beta(f(w) - f(w')) \right)$$

$$= (1 - \lambda/\beta) \|w - \bar{w}\|^2 + \frac{2}{\beta} \left(f(\bar{w}) - f(w) + f(w) - f(w') \right)$$

$$\leq (1 - \lambda/\beta) \|w - \bar{w}\|^2,$$

which gives the argument after a similar induction argument as before.
Remarks.

- β/λ is sometimes called the \textit{condition number}, based on linear system solvers, where it is $\sigma_{\text{max}}(X)/\sigma_{\text{min}}(X)$ as in least squares. Note that $\beta \geq \lambda$ and a good condition numbers improves these bounds.

- Setting the bounds to ϵ, it takes a linear number of iterations to learn a linear number of bits of \bar{w}.

- As will be explored in homework, much of the analysis we’ve done goes through if the norm pair $(\| \cdot \|_2, \| \cdot \|_2)$ is replaced with $(\| \cdot \|, \| \cdot \|^*)$ where the latter \textit{dual norm} is defined as

\[
\|s\|^* = \sup \left\{ \langle s, w \rangle : \|w\| \leq 1 \right\};
\]

for instance, we can define β-smooth wrt $\| \cdot \|$ as

\[
\|\nabla f(x) - \nabla f(y)\|^* \leq \beta \|x - y\|.
\]

Remark (more on gradient flow).

Assuming f is λ-sc and again the gradient flow $\dot{w}(t) := -\nabla f(w(t))$, the fact $\nabla f(\bar{w}) = 0$ and inequality

\[
\frac{d}{dt} \frac{1}{2} \|w(t) - \bar{w}\|^2 = \langle w(t) - \bar{w}, \dot{w}(t) \rangle
\]

\[
= -\langle w(t) - \bar{w}, \nabla f(w(t)) - \nabla f(\bar{w}) \rangle
\]

\[
\leq -\lambda \|w(t) - \bar{w}\|^2.
\]

By Grönwall’s inequality, this implies

\[
\|w(t) - \bar{w}\|^2 \leq \|w(0) - \bar{w}\|^2 \exp(-\lambda t),
\]

which as before drops $1/\beta$, but t/β in gradient descent in a sense has the same “units” as t in gradient flow.

Remark (incomplete).

It is also interesting to replace the potential functions with

\[
\|w_t - u_t\|^2 \quad \text{and} \quad \|w(t) - u(t)\|^2,
\]

where u_t and $u(t)$ are respectively gradient descent and gradient flow initialized at some $u_0 = u(0)$, possible distinct from $w_0 = w(0)$. This gives a “mixing time” style analysis (and things go through, even if we throw in coupled randomness and give a Langevin guarantee).