
Lecture 13. (Sketch.)
I Homework was due today. [ Some homework solutions

discussed in class. ]

1. Smoothness, sparsification, and the Maurey Lemma.
Fix any z ∈ Rd with ‖z‖ ≤ R; GD with w0 := 0 gives us
wt := − 1

β

∑
i<t ∇f (wi ) with

f (wt) ≤ f (z) + βR2

2t .

Speaking vaguely (but making things precise momentarily), if
∇f (wi ) is “simple”, then so is wt (by induction), and we’ve given
the existence of “simple” approximate optima to f .

Remark.

Never underestimate the power of simply writing down a gradient
on paper.
I In the least squares case f (w) := ‖Xw − y‖2/2 with w0 = 0,

wt := − 1
β

∑

i<t
∇f (wi ) = X>


− 1

β

∑

i<t
(Xwi − y)


 ;

i.e., wt ∈ im(X>) = ker(X )⊥; amongst other things, this
implies wt converges to the minimum norm solution.

I In the case of neural networks, a few recent results crucially
rely upon simply writing down the gradient and staring at it a
certain way.

Lemma (Maurey). Let β-smooth f and matrix V ∈ Rd×n be
given. For any α ∈ ∆n, and any integer k, ∃α̂ ∈ ∆n ∩ Zn/k with

f (V α̂) ≤ f (Vα) + β

2k max
i
‖V:,i‖2.

In particular, ∀α ∈ ∆n, integer k, ∃α̂ ∈ ∆n ∩ Zn/k satisfies

‖Vα− V α̂‖2 ≤ 1
k max

i
‖V:,i‖2.

Remarks.
I Note that α̂ ∈ ∆n ∩ Zn/k is k-sparse:

1 =
n∑

i=1
α̂i ≥

n∑

i=1

1
k 1

[
α̂i ≥

1
k

]
=

n∑

i=1

1
k 1 [α̂i > 0] = 1

k
∣∣{i : α̂i > 0}

∣∣ .

I This lemma highlights another power of smoothness: it allows
us to sparsify convex hulls! We’ll use this property in the
statistical/generalization part of the class.

I It’s also used in a neural network uniform approximation proof
Barron (1993).



Remarks (continued).
I Another interpretation of the result: for any x ∈ V ∆n, there

exists x̂ ∈ V ∆n which is k-sparse and satisfies

‖x − x̂‖2 ≤ 1
k max

i
‖V:,i‖2.

This has no dependence on the dimensions of V , but only the
norms of its columns!

I To highlight this lack of dimension dependence, consider a set
U with supv∈U ‖v‖ ≤ R <∞ (but potentially |U| =∞). For
any x ∈ cl(conv(U)) and ε > 0, by definition, there exists a
subset (u1, . . . , un) and α ∈ ∆n with

‖x − xn‖ ≤ ε where xn :=
n∑

i=1
αiui .

Now we can apply the Maurey Lemma to xn, and obtain xk
which is k-sparse with

‖xn − xk‖2 ≤
R2

k , ‖x − xk‖2 ≤ 2ε2 + 2R2

k .

Remarks (continued).
I There is something markedly different about the infinite and

finite cases. For the finite case, we can construct a single
sparsification V ∆n ∩ Zn/k, and use this for all approximants.
In the infinte case, we might be obtaining a different finite
matrix for each element we try to sparsify.

Similarly, the choice of particular convex combination weights
α̂ does depend on the function f ; the proof does not construct
it independently of f .

Proof. Let β-smooth f , α ∈ ∆n, integer k be given. Define r.v. X
with Pr[X = ei ] = αi , whereby

EX =
n∑

i=1
αiei = α, EVX = VEX = Vα.

Let (X1, . . . ,Xn) be k iid copies of X , define Y := ∑
i Xi/k (thus

again EY = α and EVY = Vα), and

E‖Vα− VY ‖2 = 1
k2E

〈 k∑

i=1
(Vα− VXi ),

k∑

j=1
(Vα− VXj)

〉

= 1
k2E




k∑

i=1
‖Vα− VXi‖2 +

∑

i 6=j

〈
Vα− VXi ,Vα− VXj

〉



= 1
kE‖Vα− VX1‖2 = 1

kE
(
‖Vα‖2 − 2 〈VX1,Vα〉+ ‖VX1‖2

)

= 1
k







n∑

i=1
αi‖V ei‖2


− ‖Vα‖2


 ≤ 1

k ‖α‖1 max
i
‖V ei‖2.

Proof (continued).

Thus
E‖Vα− VY ‖2 ≤ 1

k ‖α‖1 max
i
‖V:,i‖2.

By the probabilistic method (min is at most the expectation), there
exists a y0 ∈ ∆n ∩ Zn/k satisfying this bound, which gives the
second part of the lemma. For the first part, since f is β-smooth,

Ef (VY ) ≤ E
(

f (Vα) +
〈∇f (Vα),VY − Vα

〉
+ β

2 ‖Vα− VY ‖2
)

≤ f (Vα) + 0 + β

2k max
i
‖V:,i‖2,

which now (by the probabilistic method) gives a y1 satisfying the
first part of the theorem.

Note. We did not use a single y0 for both parts.

2. Constructing sparse covers.
Natural greedy approach:

1. w0 := V α̂0 for some (sparse) α̂0 ∈ ∆n.

2. For i ∈ {1, . . . , t}:
2.1 ui := arg minv∈{V e1,...,V en} 〈wi−1 − Vα, v〉.
2.2 wi := (1− ηi )wi−1 + ηiui ∈ V ∆n.

To generalize this, note
wi−1 − Vα = ∇w (w 7→ ‖w − Vα‖2/2)(wi−1).

Frank-Wolfe / conditional gradient method.

1. w0 ∈ S.

2. For i ∈ {1, . . . , t}:
2.1 ui := arg minv∈S

〈
∇f (wi−1), v

〉
. (Assume minimum exists.)

2.2 wi := (1− ηi )wi−1 + ηiui .



Remark (constrained optimization).

Frank-Wolfe is performing optimization constrained to a set S.
I To do so, it must compute arg minv∈S

〈∇f (wi−1), v
〉
, which is

a linear objective subject to a convex constraint.
I A standard competing approach, which we will discuss soon, is

projected gradient descent, which must compute
arg minv∈S ‖v − w‖2, a quadratic objective subject to a convex
constraint.

Frank-Wolfe literature often focuses on this distinction, naming
many examples where the former is more tractable than the latter.
Personally, I have found Frank-Wolfe very easy and convenient to
implement a number of times. It is nice that it never leaves the
constraint set.

Theorem.

Suppose f is β-smooth and convex, S is closed and bounded with
D := supv ,v ′∈S ‖v − v ′‖ <∞. Let (wi )i≤t be given by Frank-Wolfe
with ηi := 2/(i + 1). Then

f (wt) ≤ f (z) + 2βD2

t + 1 .

Remark (Comparison to Maurey).
I To make the comparison, set S := {V e1, . . . ,V en}.
I Maurey was non-constructive, did not need f to be convex, and

slightly tighten the constants in the bound (but that may be
analytic coincidence).

I Maurey gave a discrete solution in V α̂ with α̂ ∈ ∆n ∩ Zn/k.
Frank-wolfe had Vα′ where α′ has support size at most k but
is real-valued. The exact properties of α′ will be discussed
momentarily.

Remarks (continued).
I (Step size.) Using ηi := 1/i incurs a factor ln(t) in the bound.

The weighting here can be shown inductively to satisfy

wt :=
∑t

i=1 ivi∑t
i=1 i = 2

t(t + 1)

t∑

i=1
ivi ,

which puts more wait on later choices, and is sometimes called
“polynomial weighting”.

I To simplify, let’s consider S := {w : ‖w‖2 ≤ 1}. Then

v := − ∇f (w)
‖∇f (w)‖ , w ′ := w − η

(
∇f (w)
‖∇f (w)‖ + w

)
,

where the final “+w” is not present in gradient descent.

Remarks (continued).
I Recall the definition of dual norm:

‖s‖∗ := arg max{〈w , s〉 : ‖w‖ ≤ 1}.

Consequently, if S := {w : ‖w‖ ≤ 1} (now an arbitrary norm),
then

v := arg min
v inS

〈∇f (w), v
〉

satisfies
〈∇f (w), u

〉
= −‖∇f (w)‖∗. (We might elaborate

upon this sort of analysis in the homework.)
I (Stopping conditions.) We mentioned that duality gap is the

best way to construct stopping conditions, but that it’s
generally computationally infeasible. In the case of
Frank-Wolfe, it ends up being tractable and clean (we might
have a homework problem on this).



Proof. Let w ∈ S and η ∈ [0, 1] be arbitrary, and set
u := arg min{〈∇f (w), v

〉
and w ′ := (1− η)w + ηu. For any z ,

f (w ′)− f (z) ≤ f (w)− f (z) +
〈∇f (w), η(u − w)

〉
+ βη2‖u − w‖2

2

≤ f (w)− f (z) + ηmin
v∈S

〈∇f (w), v − w
〉

+ βη2D2

2

≤ f (w)− f (z) + η
〈∇f (w), z − w

〉
+ βη2D2

2

≤ f (w)− f (z) + η(f (z)− f (w)) + βη2D2

2

= (1− η)
(
f (w)− f (z)

)
+ βη2D2

2 .

Now consider i = 1; then ηi = 2/(i + 1) = 1, so the above gives

f (w1)− f (z) ≤ 0 + βη2D2

2 ≤ 2βD2

i + 1 .

Proof (continued).

When i > 1, the inductive hypothesis and preceding inequality
together give

f (w ′)− f (z) ≤ (1− 2/(i + 1))
(
f (w)− f (z)

)
+ 2βη2D2

(i + 1)2

≤ (1− 2/(i + 1))
(
2βD2

i

)
+ 2βη2D2

(i + 1)2

≤ 2βD2

i + 1

( i − 1
i + 1

i + 1

)
.
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