Lecture 13. (Sketch.)

» Homework was due today. [ Some homework solutions
discussed in class. |

1. Smoothness, sparsification, and the Maurey Lemma.

Fix any z € RY with ||z|] < R; GD with wp := 0 gives us
Wi 1= —%Z,QVf(W,-) with

BR?
f <f .
(we) < F(2) +
Speaking vaguely (but making things precise momentarily), if
Vi (w;) is “simple”, then so is w; (by induction), and we've given
the existence of “simple” approximate optima to f.

Remark.

Never underestimate the power of simply writing down a gradient
on paper.

> In the least squares case f(w) := || Xw — y|?/2 with wy = 0,

Wy 1= —; ZW(W,-) =XxT (—; D (Xw —y)) ;

i<t

i.e., wy €im(X") = ker(X)*; amongst other things, this
implies w; converges to the minimum norm solution.

» In the case of neural networks, a few recent results crucially
rely upon simply writing down the gradient and staring at it a
certain way.

Lemma (Maurey). Let S-smooth f and matrix V € RY*" be

given. For any a € A, and any integer k, 3& € A, NZ" /k with
f(Va) < f(Va) + 5{ max || V. ;||%.

In particular, Voo € A, integer k, 3& € A, N7Z" [k satisfies

A 1
|Va = VP < . max [V,

Remarks.

» Note that & € A, NZ"/k is k-sparse:
1 ZH:A>ZH:1]1[A>1] Zn:l]l[“ > 0] 1\{i A > 0}
— & > — o> —| = — (o% = — e .

i=1 ok k il k

» This lemma highlights another power of smoothness: it allows
us to sparsify convex hulls! We'll use this property in the
statistical /generalization part of the class.

» |t's also used in a neural network uniform approximation proof
Barron (1993).




Remarks (continued).

» Another interpretation of the result: for any x € VA, there
exists X € VA, which is k-sparse and satisfies

1
[ = %% < - max| Vill?.

This has no dependence on the dimensions of V/, but only the
norms of its columns!

» To highlight this lack of dimension dependence, consider a set
U with sup,cy ||v]] < R < oo (but potentially |U| = c0). For
any x € cl(conv(U)) and € > 0, by definition, there exists a
subset (u1,...,u,) and o € A, with

n
where x, 1= Za,—u;.
i=1

[x — x|l <€

Now we can apply the Maurey Lemma to x,, and obtain xx
which is k-sparse with
2 2

2R
0 = 5l < -, I —xll? < 26 + 2

Proof. Let S-smooth f, a € A, integer k be given. Define r.v. X
with Pr[X = ej] = «;, whereby

n
EX = ZO&,’E,’ = qQ,
i=1

Let (Xi,...,Xn) be k iid copies of X, define Y :=3"; X;/k (thus
again EY = o and EVY = Va), and

EVX = VEX = Va.

1 k k
E|Va - VY|? = k2E<Z (Va = VX),) (Vo — VX;) >
i=1 j=1

1 k
= E S IVa— VXi[?+ > (Va - VX;, Va — VX;)
i=1 i#j
_ 1 . 2 _ 1 2 2
= L E[Va - VX |* = L E ([[Val® = 2(VX1, Va) + | VX4]|

=
=

= % (Z Oéiveiz) — ||V0z||2 —||0z||1 max |]Ve,||2.

i=1

Proof (continued).

Thus

1
E[Va — VY| < o flally max || Vil

By the probabilistic method (min is at most the expectation), there
exists a yp € A, NZ"/k satisfying this bound, which gives the
second part of the lemma. For the first part, since f is S-smooth,

Ef(VY) <E (f(Va) +(VF(Va), VY — Va) + §|| Va — VY|y2>

< f(Va)+0+ fkmaxHV 1%,

which now (by the probabilistic method) gives a y; satisfying the
first part of the theorem.

Note. We did not use a single yy for both parts.

2. Constructing sparse covers.
Natural greedy approach:
1. wp := V&g for some (sparse) g € A,.
2. Forie{l,... t}:
2.1 wpi=argmingcrve,  ve,} (Wi-1 — Va, v).

2.2 wp = (]. — 77,')W,'71 +niu; € VA,

To generalize this, note
wi_1 — Va =V (w = ||lw— Val|?/2)(wi_1).

Frank-Wolfe / conditional gradient method.
1. wo €S.
2. Forie{l,... t}:
2.1 uj == argmin,¢s (VF(w;_1),v). (Assume minimum exists.)

22 wi = (1 —n)wi—1 + niu;.




Remark (constrained optimization).
Frank-Wolfe is performing optimization constrained to a set S.

» To do so, it must compute arg min,cs (Vf(w;_1), v), which is
a linear objective subject to a convex constraint.

» A standard competing approach, which we will discuss soon, is
projected gradient descent, which must compute
argmin s ||v — w||?, a quadratic objective subject to a convex
constraint.

Frank-Wolfe literature often focuses on this distinction, naming
many examples where the former is more tractable than the latter.
Personally, | have found Frank-Wolfe very easy and convenient to
implement a number of times. It is nice that it never leaves the
constraint set.

Theorem.

Suppose f is S-smooth and convex, S is closed and bounded with
D :=sup, ,cs|lv— V|| <oco. Let (w;)i<: be given by Frank-Wolfe
with n; :=2/(i +1). Then

23D?
f <f :
(we) < F(2) +
Remark (Comparison to Maurey).
» To make the comparison, set S := {Vey,..., Ve,}.

» Maurey was non-constructive, did not need f to be convex, and
slightly tighten the constants in the bound (but that may be
analytic coincidence).

» Maurey gave a discrete solution in V& with & € A, NZ"/k.
Frank-wolfe had Vo’ where o’ has support size at most k but
is real-valued. The exact properties of o will be discussed
momentarily.

Remarks (continued).

» (Step size.) Using n; := 1/i incurs a factor In(t) in the bound.
The weighting here can be shown inductively to satisfy

>ie1 Vi

t .
i=11

W 1=

2 t
— T
t(t+1) =

which puts more wait on later choices, and is sometimes called
“polynomial weighting”.

» To simplify, let's consider S := {w : ||w||2 < 1}. Then

Lo Vf(w) e [ VW)
T VAW ' ”(HW(WW )

where the final “4w" is not present in gradient descent.

Remarks (continued).

» Recall the definition of dual norm:
[s[l« := arg max{(w,s) : ||w| < 1}.

Consequently, if S := {w : ||w]|| <1} (now an arbitrary norm),
then
v :=argmin (Vf(w),v)
v inS
satisfies (Vf(w), u) = —[|Vf(w)]||s. (We might elaborate
upon this sort of analysis in the homework.)

» (Stopping conditions.) We mentioned that duality gap is the
best way to construct stopping conditions, but that it's
generally computationally infeasible. In the case of
Frank-Wolfe, it ends up being tractable and clean (we might
have a homework problem on this).




Proof. Let w € S and 7 € [0, 1] be arbitrary, and set
u:=argmin{(Vf(w),v) and w' := (1 — n)w + nu. For any z,

f(W’) - f(Z) < f(W) — f(z) + <Vf(W),77(u o W)> n M

2
< f(w)—f(z)+ 7 min (VF(w),v—w)+ 577;[72
2N2
< F(w) — f(2) + n(VF(w),z — w) + 5”2D
202
< f(w) — f(2) + 1(f(2) - F(w)) + 67’2D

= (=) (F(w) — () + P22

Now consider i = 1; then n; = 2/(i + 1) = 1, so the above gives

2 N2 2
Bn?D? _ 28D

flwp) —f(z) <0+ > Sia1

Proof (continued).

When i > 1, the inductive hypothesis and preceding inequality
together give

232 D?

(i +1)2
2 2N2

<a-2/+n) (BF) 4 72

26D2<i—1 1 )
< — + - .
—i+1 i i+1

F(w) = f(2) < (1-2/(i+ 1) (f(w) - f(2)) +
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