
Lecture 14. (Sketch.)
I No class next Wednesday.
I When should we have final project presentations?

1. Convex “margin losses”.
I In general, our losses have the form `(y , ŷ).
I In the binary classification case (our lazy focus), we can

simplify with univariate “margin” losses: (y , ŷ) 7→ `(−y ŷ).
I We want `(−y ŷ) large when ŷ 6= y ; thus ` nondecreasing.
I Another convention is to drop “−” and have nonincreasing

losses.

I Some examples:
I Least squares: y = ±1, so (y + ŷ)2 = (y(1 + ŷ))2 = (1 + ŷ)2;

so `ls(z) := (1 + z)2/2.
I Logistic loss `log(z) = ln(1 + exp(z)). Most common in practice

(multiclass case is “cross entropy” used in neural networks).
When z ≥ 0, it’s essentially affine; when z < 0 it is similar to
exp.

I Ramp loss `γ(z) := max{0,min{1, 1 + z/γ}}, which is
nonconvex. We’ll use this in generalization analysis.

Remark (smoothness and convexity of risks/losses).
I If ` is convex, R` might still be non-convex (as a function of

the model parameters).
I If ` is β-smooth and the predictor f is differentiable in the

parameters w ,
∥∥∥`′(−yf (w ; x))(−y∇w f (w ; x))− `′(−yf (w ′; x))(−y∇w ′f (w ′; x))

∥∥∥

=
∥∥∥`′(−yf (w ; x))∇w f (w ; x))− `′(−yf (w ′; x))∇w ′f (w ′; x))

∥∥∥ .

In the linear case f (w ; x) = 〈w , x〉, this becomes
∥∥∥`′(−yf (w ; x))x − `′(−yf (w ′; x))x

∥∥∥

≤ ‖x‖
∥∥∥`′(−y 〈w , x〉)− `′(y 〈w , x〉)

∥∥∥ ≤ ‖x‖2β
∥∥∥w − w ′

∥∥∥ ,

meaning smoothness of ` is inherited by the risk R̂ as a
function of the model parameters.

Remark (more on smoothness, given its role in optimization).

Here are two standard ways to get a smooth optimization problem.
Note that these are mainly “of theoretical interest”; e.g., I don’t
know of anyone applying smoothing when training (non-smooth)
ReLU networks.
I Mollification. replace f with w 7→ Eξf (w + ξ), where
ξ ∼ N (0, σ2I) for some some standard deviation σ.

I Moreau-Yosida regularization. Recall the Fenchel/convex
conjugate g∗(s) = supx 〈x , s〉 − g(x). If g is λ-sc, then g∗ is
λ−1-smooth, Thus replacing objective f with
(f ∗ + ‖ · ‖2/(2β))∗ gives a nearby β-smooth objective. A
related topic are “proximal point methods”.



2. Classification & convex losses: separable case.
The rest of the lecture considers the relationship of convex risk
minimization and zero-one/classification minimization. Namely,
consider the relationship

Rz(f )− inf
g
Rz(g) vs. R`(f )− inf

g
R`(g)

We minimize the right side because it seems more tractable,
however we care about the left side. (Rz(f ) = Pr[f (x) 6= y ].)

Note. The infimum is over all (measurable) functions.

Remark. Much of this literature considers the RHS tractable (e.g.,
convex opt over Rd with d small), supposes the right hand side is
not 0, and considers the distribution not the training set. It seems
deep learning has shaken up the dominant paradigm here: now the
RHS is 0 over the training set, and it’s not convex but it seems
“tractable in practice”.

Theorem. Suppose ` ≥ 0 and ` nondecreasing. Then

Pr[f (X ) 6= Y ] = Rz(f ) ≤ R`(f )
`(0) .

If ∃f̄ ∈ F with f̄ (x)y > 0 almost surely and F is closed under
multiplication by constants and limz→−∞ `(z) = 0, then

Rz(f )− inf
g meas.

Rz(g) ≤ 1
`(0)

(
R`(f )− inf

h∈F
R`(h)

)
.

Remark.
I The last inequality is pretty good, and the technical-looking

assumptions aren’t so bad (e.g., often satisfied by neural
networks on finite training sets).

Proof. For the first part, by Markov’s inequality,

Pr[f (X ) 6= Y ] ≤ Pr[−f (X )Y ≥ 0] ≤ Pr[`(−f (X )Y ) ≥ `(0)]

≤ E`(−f (X )Y )
`(0) .

The second part follows if we can show the two infima are 0. Since
x 7→ sgn(f (x)) is measurable and agrees with y almost surely,

0 ≤ inf
g meas.

Pr[g(X ) 6= Y ] ≤ Pr[sgn(f̄ (X )) 6= Y ] = 0,

On the other hand, let ε > 0 be arbitrary, choose τ so that r ≤ τ
implies `(r) ≤ ε/2, and choose c large enough so that
Pr[|cf̄ (X )| ≤ τ ] ≤ ε/(2`(0)). Then, since cf̄ ∈ F ,

0 ≤ inf
f ∈F
R`(f ) ≤ R`(cf̄ )

= E
(
`(−cf̄ (X )Y )1[|cf̄ (X )| ≤ τ ]

)
+ E

(
`(−cf̄ (X )Y )1[|cf̄ (X )| > τ ]

)

= `(0)Pr[|cf̄ (X )| ≤ τ ] + E
(
`(r)

) ≤ ε.

2. The general case.
Define regression function p̄(x) := Pr[Y = 1|X = x ], and bayes
predictor h̄(x) := sgn(2p̄ − 1).
I h̄ is the best classifer: for any other h : X → {−1,+1},

Rz(h)−Rz(h̄) = E
(
Pr[h(X ) 6= Y |X ] + Pr[h̄(X ) 6= Y |X ]

)

= E
(
1[h(X ) 6= h̄(X )]

(
max{p̄(X ), 1− p̄(X )} −min{p̄(X ), 1− p̄(X )}

))

= E
(
1[h(X ) 6= h̄(X )]

∣∣2p̄(X )− 1
∣∣
)
≥ 0.

I infh meas.Rz(h) = Rz(h̄) = 0 iff p̄ ∈ {0, 1} a.e..
In the theorem earlier today, we had Rz(h̄) = 0.

If Rz(h̄) > 0 things are much nastier. We’ll discuss negative and
positive results.



2a. General case: negative results.
First, a remark on computation.

Remark. It is possible that there exists a linear predictor f with
R̂z(sgn(f )) = 0.01, but it is NP-hard to find a linear predictor g
with R̂(sgn(g)) ≤ 0.49 (Guruswami and Raghavendra 2006).

Remark. Some statements are on R, some on R̂. Can instantiate
the R̂ statements with an empirical measure, but it can be brittle;
e.g., demanding the same instance to appear multiple times with
different labels.

Minimizing a convex risk does not circumvent this hardness barrier:
convex risk minimization can be fooled arbitrarily badly.

Theorem (see (Ben-David et al. 2012) for a similar construction).
Let ε ∈ (0, 1) and r ∈ [0, 1] be given. There exists a discrete
probability distribution on n = O(1/ε) examples ((xi , yi ))n

i=1
satisfying:
I xi ∈ R, yi = +1 (univariate, positive labels).
I There exists a linear predictor w̄ ∈ R with Rz(w̄) ≤ ε.
I For any convex loss ` : R→ R≥0 with

min ∂`(0) ≥ r ·max ∂`(0) > 0, the convex risk R` has
minimizers, and every minimizer ŵ has Rz(ŵ) ≥ 1− ε.

Remark (intuition). Suppose (as above) min ∂`(0) > 0.
I For m > 0, note `(m) ≥ `(0) + m ·min ∂`(0); linear in m.
I On the other hand, `(−m) ≥ 0; increasing m doesn’t help

much. A single wrong prediction can matter more than many
correct ones.

Proof.
I Pick n with ε/2 ≤ 1/n ≤ ε (thus n = O(1/ε)).
I Place (x1, . . . , xn−1) at +1 with yi = +1.
I Place xn := −c with c := n/r , and yn := +1. [ Picture drawn

in class. ]
I Note that any w̄ > 0 is globally minimizes Rz, attaining
R(z) = 1/n ≤ ε.

I Let any convex ` : R→ R≥0 be given as specified in the
theorem; it remains to show that R` behaves badly.

I Note that R` possess minimizers: e.g., it possesses bounded
sublevel sets by applying the subgradient rule to R`(±m) for
sufficiently large m, and comparing this to R`(0).

I It remains to show that all minimizers are bad; namely, any
minimizer ŵ has ŵ < 0, and thus R`(ŵ) ≥ (n − 1)/n ≥ 1− ε.

Proof (continued).

It will now be shown that any w ≥ 0 can not be a minimizer, thus
completing the proof (since minimizers exist, thus must be
negative).
I Note that 0 6∈ ∂R`(0): setting α := max ∂`(0),

minR`(0) = min
(n − 1

n ∂(w 7→ `(−w))(0) + 1
n∂(w 7→ `(cw))(0)

)

= min
(
−n − 1

n ∂`(0) + c
n∂`(0)

)

≥ −n − 1
n α + c

n (rα) = α

n > 0.

I On the other hand, Since s := min ∂R`(w) > 0 as above,
every w > 0 has

R`(w) ≥ R`(0) + s(w − 0) > R`(0).



2b. General case: positive results.
A key thing went wrong in this example:
I Weak representation power. Predictions on +1 constrained

predictions on −c; this is similar to the “separation condition”
in Stone-Weierstrass. Note: for linear predictors, these
constraints are easy to understand, but for, say, deep networks,
no one understands.

Remark. We will only be able to say something strong when the
predictor class is essentially everything (e.g., all continuous
functions). It’s not clear how to prove anything more sensitive.

So, the predictors need to be expressive. What about the loss
function?

Consider some x and p̄ with p := p̄(x) = Pr[Y = 1|X = x ] 6= 1/2.
I The error of a predictor f conditioned on x is

`(−f (x))p + `(f (x))(1− p).

I Suppose the function class is so powerful that f (x) can be set
to any α ∈ R. Then we want ` to agree with
h̄(x) = sgn(2p − 1):

inf
α∈R

`(−α)p + `(α)(1− p) < inf
α∈R

(2p−1)≤0

`(−α)p + `(α)(1− p).

Let’s call this condition the “majority vote condition”: ` should
prefer answers that agree with majority vote on the conditional
distribution Pr[Y |X = x ].

In the literature, this is called classification calibration (Zhang
2004; Bartlett, Jordan, and McAuliffe 2006).

If F is expressive and ` agrees with majority vote, minimizing R`
over F will pick f ∈ F that agrees with h̄ everywhere, and Rz(f ) is
also small.

Theorem (See (Zhang 2004) for similar version and proof).
Suppose ` : R→ R≥0 convex, min ∂`(0) > 0. Define the function

G`(p) := `(0)− inf
α∈R

(
p`(−α) + (1− p)`(α)

)
.

Suppose there exist c ≥ 0, s ≥ 1 so that ∀p ∈ [0, 1],
|2p − 1| ≤ cG`(p)1/s . Then

Rz(f )− inf
g meas

(sgn(g)) ≤ c
(
R`(f )− inf

g meas
R`(g)

)1/s
.

Remark.

Here are some standard losses and their constants; see (Zhang
2004) for more discussion. In particular, these numbers done mean
one is really better than another. . .
I Squared loss z 7→ (1 + z)2/2: c = 1, s = 2.
I Hinge loss z 7→ max{0, 1 + z}: c = s = 1.
I Logistic loss z 7→ ln(1 + exp(z)): c =

√
2, s = 2.

I Exponential loss z 7→ exp(z): c =
√
2, s = 2.

I Impagliazzo-Zhang loss

z 7→





0 z < −1,
(1 + z)2 z ∈ [−1,+1],
4z z > 1,

has c = s = 1. (Impagliazzo 1995)



Proof. Starting from an earlier calculation, setting h = sgn(f ) for
convenience,

Rz(h)−R(h̄)

= E
(
1[h̄(X ) 6= h(X )]|2p̄(X )− 1|

)

≤ E
(
1[f (X )(2p̄(X )− 1) ≤ 0]|2p̄(X )− 1|

)

≤ cE
(
1[f (X )(2p̄(X )− 1) ≤ 0]1/s

·
(
`(0)− inf

α
(p̄(X )`(−α) + (1− p̄(X ))`(α))

)1/s )

≤c
(
E1[f (X )(2p̄(X )− 1) ≤ 0]

(
`(0)− inf

α
(p̄(X )`(−α) + (1− p̄(X ))`(α))

))1/s

.

The proof is done if we can show f (x)(2p̄(x)− 1) ≤ 0 implies
`(0) ≤ p̄(x)`(−f (x)) + (1− p̄(x))`(f (x)).

Proof (continued).

Choose any s ∈ ∂`(0) with s > 0. Taking the convex combination
(with weights p := p̄(X ) and 1− p) of the two subgradient
inequalities

`(−α) ≥ `(0) + s(−α− 0),
`(α) ≥ `(0) + s(α− 0),

gives

p`(−α) + (1− p)`(α) ≥ `(0) + psα− (1− p)sα
= `(0) + sα(2p − 1)
≥ `(0).

Remark.

Can generalize these concepts to multiclass and others.

The key principle is that the predictor defines a conditional
probability model of Y given X which agrees with the true Pr[Y |X ].

[ I can elaborate, sorry. Didn’t type up all of my notes. . . ]
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