
Lecture 15. (Sketch.)
I Homework scores out. TA OH next week.
I Project presentations on reading day!

1. Handling approximate gradients.
Suppose we’re doing gradient descent over (closed) set S with
D := supw ,w ′∈S ‖w − w ′‖ <∞.
I w0 ∈ S given.
I Thereafter, wi := ΠS(wi−1 − ηigi ),

where ΠS denotes orthogonal projection
and gi is an approximate (sub)gradient.

Lemma. Let ((wi , gi ))t
i=1 given as above, along with closed convex

S, convex f , and any subgradients si ∈ ∂f (wi−1). Set
G := maxi max{‖gi‖, ‖si‖}. Then for any z ∈ S and constant
ηi := η > 0, setting ŵt := ∑

i<t wi/t,

f (ŵt)−f (z) ≤ 1
t
(
f (wi )− f (z)

) ≤ D2

2ηt +ηG2

2 +1
t
∑

i≤t
〈si − gi ,wi−1 − z〉 .

Lemma gives inequality

f (ŵt)−f (z) ≤ 1
t
(
f (wi )− f (z)

) ≤ D2

2ηt +ηG2

2 +1
t
∑

i≤t
〈si − gi ,wi−1 − z〉 .

Remarks.
I Set η = D/(G

√
t), all but last term is DG/

√
t.

(ηi = D/(G
√

i + 1) only changes constants.)
I Guarantee is on averaged iterate; meanwhile, smooth opt gave

bounds for last iterate.
I If si = gi ∈ ∂f (wi−1), last term 0. Otherwise, with no further

assumptions,

1
t
∑

i≤t
〈si − gi ,wi−1 − z〉 ≤ 1

t
∑

i≤t
2GD ≤ 2GD,

which is useless.

Proof. Following a similar expand-the-square scheme to the smooth
case, setting εi := 〈gi − si , z − wi−1〉,

‖wi − z‖2 = ‖ΠS(wi−1 − ηgi )− z‖2
(?)
≤ ‖wi−1 − ηgi − z‖2

= ‖wi−1 − z‖2 + 2η 〈gi , z − wi−1〉+ η2‖gi‖2

= ‖wi−1 − z‖2 + 2η 〈si , z − wi−1〉+ 2ηεi + η2‖gi‖2

≤ ‖wi−1 − z‖2 + 2η(f (z)− f (wi−1)) + 2ηεi + η2G2,

where (?) used ΠS nonexpansive. Rearranging,

2η(f (wi−1)− f (z)) ≤ ‖wi−1 − z‖2 − ‖wi − z‖2 + 2ηεi + η2G2.

Applying (2tη)−1∑
i≤t to both sides,

1
t
∑

i<t

(
f (wi )− f (z)

) ≤ D2

2tη + ηG2

2t + 1
2t
∑

i≤t
εi ,

and the result follows by Jensen’s inequality.



Remark.

In the β-smooth case, a step size η ≤ 2/β guaranteed the objective
function decreases.

Here there is no such guarantee!

2. Stochastic gradients.
We’ll usually use the preceding approximate gradient lemma with
stochastic gradients; then we can kill off the weird error term with
averaging/concentration.

Example. Suppose f (w) = E`(〈w ,−XY 〉), where ` is convex and
differentiable. Then g := −`′(〈w ,−xy〉)xy , for (x , y) draw
according to the distribution in f , satisfies Eg = ∇f (w): g is a
stochastic gradient for f (it is an unbiased estimate of the gradient).
We’ll come back to the example in the next lecture.

Here is the main bound for stochastic gradients.

Theorem. Suppose closed convex S and convex f given, and
((wi , gi ))t

i=1 from subgradient descent with E(gi |wi−1) ∈ ∂f (wi−1)
and η := D/(G

√
t) with G ≥ maxi max{‖gi‖, ‖E(gi |wi−1)‖}. For

any z ∈ S,

f (ŵt)− f (z) ≤ 1
t
∑

i≤t

(
f (wi )− f (z)

) ≤ DG√
t
,

and with probability at least 1− δ over the stochastic gradients,

f (ŵt)− f (z) ≤ 1
t
∑

i≤t

(
f (wi )− f (z)

) ≤
DG

(
1 +

√
8 ln(1/δ)

)

√
t

.

Proof. Applying E(·) to both sides of the earlier lemma with
si ∈ ∂f (wi−1) arbitrary,

E


1

t
∑

i<t
(f (wi )− f (z))


 ≤ DG√

t
+ 1

t E
∑

i≤t
〈gi − si , z − wi−1〉 .

By the tower property of conditional expectation,

E 〈gi − si , z − wi−1〉 . = EE
(〈gi − si , z − wi−1〉 |wi−1

)

=
∑

i≤t
E
〈
E
(
gi − si |wi−1

)
, z − wi−1

〉
= 0,

which gives the first equality in the theorem, and establishes this
error sequence is a Martingale. Consequently, by Azuma’s inequality
(see next slide), since 〈gi − si , z − wi〉 ≤ 2GD, with probability at
least 1− δ,

∑

i≤t
〈gi − si , z − wi−1〉 ≤ 2DG

√
2t ln(1/δ),

which finishes the proof.



Remarks.
I The proof had to carefully use conditional expectation because

wi is a random variable that depends on all stochastic
gradients coming before it.

I The proof used:
I Azuma-Hoeffding inequality. Suppose (Xi )n

i=1 is a martingale
difference sequence (E(Xi |X<i ) = 0) and E|Xi | ≤ R. Then with
probability at least 1− δ,

∑

i
Xi ≤ R

√
2t ln(1/δ).

In the concentration/generalization part of the course, we will
see many inequalities similar to this one.

Remarks.
I In practice, minibatches are often used. To show a benefit, we

need to use a more refined martingale inequality that pays
attention to variance [ maybe I’ll do this in homework 2 or
3... ].

I In this proof, we work with the averaged iterate. This is okay
in the convex case, but in the nonconvex case, it’s not clear
how to combine parameter vectors.

I The main reason SGD “wins” is iteration time: with n data
points, computing ∇R̂ = ∇n−1∑

i `(−fw (xi )yi ) takes n times
as long as ∇`(−fw (x)y). For a batch method to be faster, it
must somehow recoup this penalty of n. But while some batch
solvers have a good dependence on the target error ε, it
doesn’t make sense to solve for ε ≤ 1/√n in these statistical
applications, therefore even a fast runtime of
n ln(1/ε) ≈ n ln(n) doesn’t really outperform SGD’s 1/ε2 ≈ n.
Relatedly: problems should be easier with more data, not
harder.


