Lecture 15. (Sketch.)

- Homework scores out. TA OH next week.
- Project presentations on reading day!

1. Handling approximate gradients.

Suppose we're doing gradient descent over (closed) set S with $D:=\sup _{w, w^{\prime} \in S}\left\|w-w^{\prime}\right\|<\infty$.

- $w_{0} \in S$ given.
- Thereafter, $w_{i}:=\Pi_{s}\left(w_{i-1}-\eta_{i} g_{i}\right)$,
where Π_{S} denotes orthogonal projection and g_{i} is an approximate (sub)gradient.

Lemma. Let $\left(\left(w_{i}, g_{i}\right)\right)_{i=1}^{t}$ given as above, along with closed convex S, convex f, and any subgradients $s_{i} \in \partial f\left(w_{i-1}\right)$. Set $G:=\max _{i} \max \left\{\left\|g_{i}\right\|,\left\|s_{i}\right\|\right\}$. Then for any $z \in S$ and constant $\eta_{i}:=\eta>0$, setting $\hat{w}_{t}:=\sum_{i<t} w_{i} / t$,
$f\left(\hat{w}_{t}\right)-f(z) \leq \frac{1}{t}\left(f\left(w_{i}\right)-f(z)\right) \leq \frac{D^{2}}{2 \eta t}+\frac{\eta G^{2}}{2}+\frac{1}{t} \sum_{i \leq t}\left\langle s_{i}-g_{i}, w_{i-1}-z\right\rangle$.

Lemma gives inequality
$f\left(\hat{w}_{t}\right)-f(z) \leq \frac{1}{t}\left(f\left(w_{i}\right)-f(z)\right) \leq \frac{D^{2}}{2 \eta t}+\frac{\eta G^{2}}{2}+\frac{1}{t} \sum_{i \leq t}\left\langle s_{i}-g_{i}, w_{i-1}-z\right\rangle$.

Remarks.

- Set $\eta=D /(G \sqrt{t})$, all but last term is $D G / \sqrt{t}$. ($\eta_{i}=D /(G \sqrt{i+1})$ only changes constants.)
- Guarantee is on averaged iterate; meanwhile, smooth opt gave bounds for last iterate.
- If $s_{i}=g_{i} \in \partial f\left(w_{i-1}\right)$, last term 0 . Otherwise, with no further assumptions,

$$
\frac{1}{t} \sum_{i \leq t}\left\langle s_{i}-g_{i}, w_{i-1}-z\right\rangle \leq \frac{1}{t} \sum_{i \leq t} 2 G D \leq 2 G D
$$

which is useless.

Proof. Following a similar expand-the-square scheme to the smooth case, setting $\epsilon_{i}:=\left\langle g_{i}-s_{i}, z-w_{i-1}\right\rangle$,

$$
\begin{aligned}
\left\|w_{i}-z\right\|^{2} & =\left\|\Pi_{s}\left(w_{i-1}-\eta g_{i}\right)-z\right\|^{2} \stackrel{(\star)}{\leq}\left\|w_{i-1}-\eta g_{i}-z\right\|^{2} \\
& =\left\|w_{i-1}-z\right\|^{2}+2 \eta\left\langle g_{i}, z-w_{i-1}\right\rangle+\eta^{2}\left\|g_{i}\right\|^{2} \\
& =\left\|w_{i-1}-z\right\|^{2}+2 \eta\left\langle s_{i}, z-w_{i-1}\right\rangle+2 \eta \epsilon_{i}+\eta^{2}\left\|g_{i}\right\|^{2} \\
& \leq\left\|w_{i-1}-z\right\|^{2}+2 \eta\left(f(z)-f\left(w_{i-1}\right)\right)+2 \eta \epsilon_{i}+\eta^{2} G^{2}
\end{aligned}
$$

where (\star) used Π_{S} nonexpansive. Rearranging,

$$
2 \eta\left(f\left(w_{i-1}\right)-f(z)\right) \leq\left\|w_{i-1}-z\right\|^{2}-\left\|w_{i}-z\right\|^{2}+2 \eta \epsilon_{i}+\eta^{2} G^{2} .
$$

Applying $(2 t \eta)^{-1} \sum_{i \leq t}$ to both sides,

$$
\frac{1}{t} \sum_{i<t}\left(f\left(w_{i}\right)-f(z)\right) \leq \frac{D^{2}}{2 t \eta}+\frac{\eta G^{2}}{2 t}+\frac{1}{2 t} \sum_{i \leq t} \epsilon_{i},
$$

and the result follows by Jensen's inequality.

Remark.

In the β-smooth case, a step size $\eta \leq 2 / \beta$ guaranteed the objective function decreases.

Here there is no such guarantee!

2. Stochastic gradients.

We'll usually use the preceding approximate gradient lemma with stochastic gradients; then we can kill off the weird error term with averaging/concentration.

Example. Suppose $f(w)=\mathbb{E} \ell(\langle w,-X Y\rangle)$, where ℓ is convex and differentiable. Then $g:=-\ell^{\prime}(\langle w,-x y\rangle) x y$, for (x, y) draw according to the distribution in f, satisfies $\mathbb{E} g=\nabla f(w): g$ is a stochastic gradient for f (it is an unbiased estimate of the gradient). We'll come back to the example in the next lecture.

Here is the main bound for stochastic gradients.
Theorem. Suppose closed convex S and convex f given, and $\left(\left(w_{i}, g_{i}\right)\right)_{i=1}^{t}$ from subgradient descent with $\mathbb{E}\left(g_{i} \mid w_{i-1}\right) \in \partial f\left(w_{i-1}\right)$ and $\eta:=D /(G \sqrt{t})$ with $G \geq \max _{i} \max \left\{\left\|g_{i}\right\|,\left\|\mathbb{E}\left(g_{i} \mid w_{i-1}\right)\right\|\right\}$. For any $z \in S$,

$$
f\left(\hat{w}_{t}\right)-f(z) \leq \frac{1}{t} \sum_{i \leq t}\left(f\left(w_{i}\right)-f(z)\right) \leq \frac{D G}{\sqrt{t}},
$$

and with probability at least $1-\delta$ over the stochastic gradients,

$$
f\left(\hat{w}_{t}\right)-f(z) \leq \frac{1}{t} \sum_{i \leq t}\left(f\left(w_{i}\right)-f(z)\right) \leq \frac{D G(1+\sqrt{8 \ln (1 / \delta)})}{\sqrt{t}} .
$$

Proof. Applying $\mathbb{E}(\cdot)$ to both sides of the earlier lemma with
$s_{i} \in \partial f\left(w_{i-1}\right)$ arbitrary,

$$
\mathbb{E}\left(\frac{1}{t} \sum_{i<t}\left(f\left(w_{i}\right)-f(z)\right)\right) \leq \frac{D G}{\sqrt{t}}+\frac{1}{t} \mathbb{E} \sum_{i \leq t}\left\langle g_{i}-s_{i}, z-w_{i-1}\right\rangle
$$

By the tower property of conditional expectation,

$$
\begin{aligned}
\mathbb{E}\left\langle g_{i}-s_{i}, z-w_{i-1}\right\rangle . & =\mathbb{E} \mathbb{E}\left(\left\langle g_{i}-s_{i}, z-w_{i-1}\right\rangle \mid w_{i-1}\right) \\
& =\sum_{i \leq t} \mathbb{E}\left\langle\mathbb{E}\left(g_{i}-s_{i} \mid w_{i-1}\right), z-w_{i-1}\right\rangle=0,
\end{aligned}
$$

which gives the first equality in the theorem, and establishes this error sequence is a Martingale. Consequently, by Azuma's inequality (see next slide), since $\left\langle g_{i}-s_{i}, z-w_{i}\right\rangle \leq 2 G D$, with probability at least $1-\delta$,

$$
\sum_{i \leq t}\left\langle g_{i}-s_{i}, z-w_{i-1}\right\rangle \leq 2 D G \sqrt{2 t \ln (1 / \delta)}
$$

which finishes the proof.

Remarks.

- The proof had to carefully use conditional expectation because w_{i} is a random variable that depends on all stochastic gradients coming before it.
- The proof used:
- Azuma-Hoeffding inequality. Suppose $\left(X_{i}\right)_{i=1}^{n}$ is a martingale difference sequence $\left(\mathbb{E}\left(X_{i} \mid X_{<i}\right)=0\right)$ and $\mathbb{E}\left|X_{i}\right| \leq R$. Then with probability at least $1-\delta$,

$$
\sum_{i} x_{i} \leq R \sqrt{2 t \ln (1 / \delta)} .
$$

In the concentration/generalization part of the course, we will see many inequalities similar to this one.

Remarks.

- In practice, minibatches are often used. To show a benefit, we need to use a more refined martingale inequality that pays attention to variance [maybe I'll do this in homework 2 or 3...].
- In this proof, we work with the averaged iterate. This is okay in the convex case, but in the nonconvex case, it's not clear how to combine parameter vectors.
- The main reason SGD "wins" is iteration time: with n data points, computing $\nabla \widehat{\mathcal{R}}=\nabla n^{-1} \sum_{i} \ell\left(-f_{w}\left(x_{i}\right) y_{i}\right)$ takes n times as long as $\nabla \ell\left(-f_{w}(x) y\right)$. For a batch method to be faster, it must somehow recoup this penalty of n. But while some batch solvers have a good dependence on the target error ϵ, it doesn't make sense to solve for $\epsilon \leq 1 / \sqrt{n}$ in these statistical applications, therefore even a fast runtime of $n \ln (1 / \epsilon) \approx n \ln (n)$ doesn't really outperform SGD's $1 / \epsilon^{2} \approx n$. Relatedly: problems should be easier with more data, not harder.

