Lecture 15. (Sketch.)

- ► Homework scores out. TA OH next week.
- Project presentations on reading day!

Lemma gives inequality

$$f(\hat{w}_t)-f(z) \leq \frac{1}{t} \left(f(w_i)-f(z)\right) \leq \frac{D^2}{2\eta t} + \frac{\eta G^2}{2} + \frac{1}{t} \sum_{i \leq t} \left\langle s_i - g_i, w_{i-1} - z \right\rangle$$

Remarks.

- Set $\eta = D/(G\sqrt{t})$, all but last term is DG/\sqrt{t} . $(\eta_i = D/(G\sqrt{i+1})$ only changes constants.)
- Guarantee is on averaged iterate; meanwhile, smooth opt gave bounds for last iterate.
- ▶ If $s_i = g_i \in \partial f(w_{i-1})$, last term 0. Otherwise, with no further assumptions,

$$\frac{1}{t}\sum_{i\leq t} \langle s_i - g_i, w_{i-1} - z \rangle \leq \frac{1}{t}\sum_{i\leq t} 2GD \leq 2GD,$$

which is useless.

1. Handling approximate gradients.

Suppose we're doing gradient descent over (closed) set *S* with $D := \sup_{w,w' \in S} ||w - w'|| < \infty$.

- ▶ $w_0 \in S$ given.
- Thereafter, w_i := Π_S(w_{i-1} η_ig_i), where Π_S denotes orthogonal projection and g_i is an approximate (sub)gradient.

Lemma. Let $((w_i, g_i))_{i=1}^t$ given as above, along with closed convex S, convex f, and any subgradients $s_i \in \partial f(w_{i-1})$. Set $G := \max_i \max\{||g_i||, ||s_i||\}$. Then for any $z \in S$ and constant $\eta_i := \eta > 0$, setting $\hat{w}_t := \sum_{i < t} w_i/t$,

$$f(\hat{w}_t)-f(z)\leq rac{1}{t}\left(f(w_i)-f(z)
ight)\leq rac{D^2}{2\eta t}+rac{\eta G^2}{2}+rac{1}{t}\sum_{i\leq t}\left\langle s_i-g_i,w_{i-1}-z
ight
angle.$$

Proof. Following a similar expand-the-square scheme to the smooth case, setting $\epsilon_i := \langle g_i - s_i, z - w_{i-1} \rangle$,

$$\begin{split} \|w_{i}-z\|^{2} &= \|\Pi_{S}(w_{i-1}-\eta g_{i})-z\|^{2} \stackrel{(\star)}{\leq} \|w_{i-1}-\eta g_{i}-z\|^{2} \\ &= \|w_{i-1}-z\|^{2}+2\eta \langle g_{i},z-w_{i-1}\rangle + \eta^{2}\|g_{i}\|^{2} \\ &= \|w_{i-1}-z\|^{2}+2\eta \langle s_{i},z-w_{i-1}\rangle + 2\eta\epsilon_{i}+\eta^{2}\|g_{i}\|^{2} \\ &\leq \|w_{i-1}-z\|^{2}+2\eta(f(z)-f(w_{i-1}))+2\eta\epsilon_{i}+\eta^{2}G^{2}, \end{split}$$

where (\star) used Π_S nonexpansive. Rearranging,

$$2\eta(f(w_{i-1}) - f(z)) \le ||w_{i-1} - z||^2 - ||w_i - z||^2 + 2\eta\epsilon_i + \eta^2 G^2.$$

Applying $(2t\eta)^{-1}\sum_{i\leq t}$ to both sides,

$$\frac{1}{t}\sum_{i\leq t}\left(f(w_i)-f(z)\right)\leq \frac{D^2}{2t\eta}+\frac{\eta G^2}{2t}+\frac{1}{2t}\sum_{i\leq t}\epsilon_i,$$

and the result follows by Jensen's inequality.

Remark.

In the $\beta\text{-smooth}$ case, a step size $\eta \leq 2/\beta$ guaranteed the objective function decreases.

Here there is no such guarantee!

2. Stochastic gradients.

We'll usually use the preceding approximate gradient lemma with stochastic gradients; then we can kill off the weird error term with averaging/concentration.

Example. Suppose $f(w) = \mathbb{E}\ell(\langle w, -XY \rangle)$, where ℓ is convex and differentiable. Then $g := -\ell'(\langle w, -xy \rangle)xy$, for (x, y) draw according to the distribution in f, satisfies $\mathbb{E}g = \nabla f(w)$: g is a *stochastic gradient* for f (it is an unbiased estimate of the gradient). We'll come back to the example in the next lecture.

Here is the main bound for stochastic gradients.

Theorem. Suppose closed convex *S* and convex *f* given, and $((w_i, g_i))_{i=1}^t$ from subgradient descent with $\mathbb{E}(g_i|w_{i-1}) \in \partial f(w_{i-1})$ and $\eta := D/(G\sqrt{t})$ with $G \ge \max_i \max\{\|g_i\|, \|\mathbb{E}(g_i|w_{i-1})\|\}$. For any $z \in S$,

$$f(\hat{w}_t) - f(z) \leq \frac{1}{t} \sum_{i \leq t} (f(w_i) - f(z)) \leq \frac{DG}{\sqrt{t}}$$

and with probability at least $1-\delta$ over the stochastic gradients,

$$f(\hat{w}_t) - f(z) \leq rac{1}{t} \sum_{i \leq t} \left(f(w_i) - f(z)
ight) \leq rac{DG\left(1 + \sqrt{8\ln(1/\delta)}\right)}{\sqrt{t}}$$

Proof. Applying $\mathbb{E}(\cdot)$ to both sides of the earlier lemma with $s_i \in \partial f(w_{i-1})$ arbitrary,

$$\mathbb{E}\left(\frac{1}{t}\sum_{i< t}(f(w_i)-f(z))\right) \leq \frac{DG}{\sqrt{t}} + \frac{1}{t}\mathbb{E}\sum_{i\leq t}\langle g_i - s_i, z - w_{i-1}\rangle.$$

By the tower property of conditional expectation,

$$\mathbb{E} \langle g_i - s_i, z - w_{i-1} \rangle . = \mathbb{E} \mathbb{E} \left(\langle g_i - s_i, z - w_{i-1} \rangle | w_{i-1} \right) \\ = \sum_{i \leq t} \mathbb{E} \left\langle \mathbb{E} \left(g_i - s_i | w_{i-1} \right), z - w_{i-1} \right\rangle = 0,$$

which gives the first equality in the theorem, and establishes this error sequence is a Martingale. Consequently, by Azuma's inequality (see next slide), since $\langle g_i - s_i, z - w_i \rangle \leq 2GD$, with probability at least $1 - \delta$,

$$\sum_{\leq t} \langle g_i - s_i, z - w_{i-1} \rangle \leq 2DG \sqrt{2t \ln(1/\delta)},$$

which finishes the proof.

Remarks.

- The proof had to carefully use conditional expectation because w_i is a random variable that depends on all stochastic gradients coming before it.
- ► The proof used:
 - Azuma-Hoeffding inequality. Suppose (X_i)ⁿ_{i=1} is a martingale difference sequence (𝔼(X_i|X_{<i}) = 0) and 𝔼|X_i| ≤ R. Then with probability at least 1 − δ,

$$\sum_{i} X_i \leq R \sqrt{2t \ln(1/\delta)}$$

In the concentration/generalization part of the course, we will see many inequalities similar to this one.

Remarks.

- In practice, minibatches are often used. To show a benefit, we need to use a more refined martingale inequality that pays attention to variance [maybe I'll do this in homework 2 or 3...].
- In this proof, we work with the averaged iterate. This is okay in the convex case, but in the nonconvex case, it's not clear how to combine parameter vectors.
- The main reason SGD "wins" is iteration time: with *n* data points, computing ∇R̂ = ∇n⁻¹ ∑_i ℓ(-f_w(x_i)y_i) takes *n* times as long as ∇ℓ(-f_w(x)y). For a batch method to be faster, it must somehow recoup this penalty of *n*. But while some batch solvers have a good dependence on the target error ε, it doesn't make sense to solve for ε ≤ 1/√n in these statistical applications, therefore even a fast runtime of n ln(1/ε) ≈ nln(n) doesn't really outperform SGD's 1/ε² ≈ n. Relatedly: problems should be *easier* with more data, not harder.