Lecture 15. (Sketch.)

» Homework scores out. TA OH next week.

» Project presentations on reading day!

1. Handling approximate gradients.

Suppose we're doing gradient descent over (closed) set S with
D = sup,, yes l|lw —w'| < occ.

> wp € S given.

» Thereafter, w; 1= MNg(wi—1 — nigi),
where [l denotes orthogonal projection
and g; is an approximate (sub)gradient.

Lemma. Let ((w;,g;))t_; given as above, along with closed convex
S, convex f, and any subgradients s; € Of (w;_1). Set

G := max; max{||gi|l, ||si|]|}. Then for any z € S and constant

ni :=mn > 0, setting Wy := > ;. wi/t,

2
(F(wi) ~ F(2)) < 542405 (s~ g wi — 2)

2
F(We)—F(2) < =
(7)=f(z) < ot 2t

~ | =

Lemma gives inequality

2 2
F(e)—F(2) < D” (n6” 1

~ | =

—2nt 2 t i

Remarks.

» Set n = D/(Gy/t), all but last term is DG/+/t.
(ni = D/(G+/i + 1) only changes constants.)

» Guarantee is on averaged iterate; meanwhile, smooth opt gave
bounds for last iterate.

> If s; = g; € Of(w;_1), last term 0. Otherwise, with no further
assumptions,

1 1
- i —8i,wi—1—2z) < - ) 2GD <2GD,
LS (o5 < LY

i<t i<t

which is useless.

(F(w) = f(2)) < —+——+=> _ (si— g, wi-1— 2) .

Proof. Following a similar expand-the-square scheme to the smooth
case, setting €; := <gi — S5j,Z — w,-,1>,

)
lwi — z|* = INs(wi—1 —ngi) — 2| < |wi—1 —ngi — 2|
= |lwi—1 — 2|* +2n (g1, 2 — wi—1) + n*| gi]]®
= [wi—1 — 2| + 20 (si, 2 = wi—1) + 2ne; + 7°|gi|?
< |lwi—1 — 2||* + 29(f(2) — f(wi-1)) + 2ne; + n*G?,
where (x) used Mg nonexpansive. Rearranging,
2n(f(wi-1) — £(2)) < llwi—1 — 2||* = ||w; — 2||* + 2ne; + 7 G,
Applying (2tn)~1 > i<t to both sides,

1 D> nG*> 1
- E ) — < — 407 4= E .
t (F(w;) — £(2)) < 2tn + 2t + 2t i<t€”

i<t

and the result follows by Jensen's inequality.




Remark.

In the 8-smooth case, a step size n < 2/ guaranteed the objective
function decreases.

Here there is no such guarantee!

2. Stochastic gradients.

We'll usually use the preceding approximate gradient lemma with
stochastic gradients; then we can kill off the weird error term with
averaging/concentration.

Example. Suppose f(w) = E{((w,—XY')), where ¢ is convex and
differentiable. Then g := —¢'({w, —xy))xy, for (x,y) draw
according to the distribution in f, satisfies Eg = Vf(w): g is a
stochastic gradient for f (it is an unbiased estimate of the gradient).
We'll come back to the example in the next lecture.

Here is the main bound for stochastic gradients.

Theorem. Suppose closed convex S and convex f given, and
((w;, gi))t_; from subgradient descent with E(gi|w;_1) € Of (w;_1)
and 7 := D/(Gy/t) with G > max; max{||gi|, ||E(gi|wi—1)|}. For
any z € S,

F(ie) — F(2) < 1; (Flw) — £(2)) < 2.

and with probability at least 1 — & over the stochastic gradients,

DG (14 /8In(1/d
) — F(2) < 3 (F(wi) — 7(2)) < ( N 07)

Proof. Applying E(-) to both sides of the earlier lemma with
si € Of(w;_1) arbitrary,

P (1 S (F(wi) f(z))) < 2 EY (g -5z wiot),

i<t i<t
By the tower property of conditional expectation,
E (g — si,z— wj_1). = EE ((gi — si,z — wj_1) |wj_1)

=> E <IE (gi — silwi—1) ,z — Wi71> =0,

i<t

which gives the first equality in the theorem, and establishes this
error sequence is a Martingale. Consequently, by Azuma's inequality
(see next slide), since (g; — s;, z — w;) < 2GD, with probability at
least 1 — 0,

S (g — 51,z — wi_1) < 2DG\/2tIn(1/6),

i<t

which finishes the proof.




Remarks.

» The proof had to carefully use conditional expectation because
w; is a random variable that depends on all stochastic
gradients coming before it.

» The proof used:

» Azuma-Hoeffding inequality. Suppose (X;)_; is a martingale
difference sequence (E(Xi|X<;) = 0) and E|X;| < R. Then with
probability at least 1 — 9§,

> X < R\/2tIn(1/9).

In the concentration/generalization part of the course, we will
see many inequalities similar to this one.

Remarks.

» In practice, minibatches are often used. To show a benefit, we
need to use a more refined martingale inequality that pays
attention to variance [ maybe I'll do this in homework 2 or

3. ]

» In this proof, we work with the averaged iterate. This is okay
in the convex case, but in the nonconvex case, it's not clear
how to combine parameter vectors.

» The main reason SGD “wins"” is iteration time: with n data
points, computing VR = V1. 6(—f,(x;)y;) takes n times
as long as V{(—f,(x)y). For a batch method to be faster, it
must somehow recoup this penalty of n. But while some batch
solvers have a good dependence on the target error ¢, it
doesn’t make sense to solve for € < 1/4/n in these statistical
applications, therefore even a fast runtime of
nin(1/€) ~ nin(n) doesn't really outperform SGD's 1/¢2 ~ n.
Relatedly: problems should be easier with more data, not
harder.




