Lecture 16. (Sketch.)

» Today will be some optimization loose ends; this lecture can be
useful for project ideas.

Final comments on “handling approximate gradients”.
Here was our main result:

Theorem. Suppose closed convex S and convex f given, and
((w;, g))t_; from subgradient descent with E(gj|w;_1) € Of (w;_1)
and n := D/(G+/t) with G > max; max{||gil, ||E(gi|wi_1)||}. For
any z € S,

B (¢~ (@) <B ({2 (7(w) ~ (2) < 72

and with probability at least 1 — § over the stochastic gradients,

DG (1 + /8In(1/3)
Flie) = F(2) < 3 (F(w) — £(2)) < (N)

Remarks.

» We have freedom in how we use the bound, namely what the
random distribution is.

> We can make f = R and obtain a guarantee over a finite
training set S := ((x;,yi))7_1; e.g., with a convex ¢ and linear
predictor, if in every round we sample (x;, y;) uniformly at
random from S and use the stochastic gradient R
—0'(—(w;_1,%y;))x;y;, the theorem gives a bound on R. This
is a randomized algorithm and the probability distribution is
over the behavior of this algorithm.

» If S (in the preceding point) was drawn iid from some
distribution and we use each example at most once, then we
have a guarantee on R. (Using examples more than once breaks
the martingale in the proof! In practice, people do multiple
passes, so the preceding guarantee should be used.)

» People are not consistent about calling one or the other
“stochastic gradient descent”! So when you see a theorem of
this type, you need to check whether the expectation is over a
randomized algorithm or over a distribution providing examples!

Remarks (continued).

» Some people call R (as above) the “finite sum” setting.

(Project idea) Some recent algorithms for this setting are
SVRG, SDCA, ...

» What does that § probability mass throw out in the above
examples? For instance, the situation that we draw the same
example in every round.

» In practice, random permutation is generally used: the
algorithm picks an ordering of the training set, performs sgd
with this ordering, then picks another ordering, performs sgd
again, etc. (Project idea) There is ongoing work on this topic,
but still it is considered open.

Summary of optimization bounds we've covered.

» Lipschitz / approximate gradient setting.

> Good news: approximate/noisy gradients. Bad news: needs
convexity, compactness/projections, rate is 1/sqrtt, averaged
rather than last iterate.

» Smooth setting.

> Good news: 1/+/t rate for the gradient norms (though not last
iterate), 1/t rate for (convex) function value with last iterate.

Bad news: smoothness assumption needs work for deep learning.

» Gradient flow.

» Good news: similar rates and guarantees to smoothness without
assuming it, math is easier and people are using it with deep
learning. Bad news: maybe gradient descents discrete steps help
with bad local optima?

» Smooth and strongly convex: didn't discuss much (other than
proving exp(—A\t/[3) rate) since doesn't seem relevant for deep
learning (I think...) and proofs are similar.

Neural network landscape results.

One active line of work studying deep learning focuses on the shape
of the landscape, most results focusing on cases where all local
optima are global.

» Matrix completion: solve (under RIP)

- R V2VARY.
KT, 2 (Mg = XXT)
(ij)es
Recently it was shown that all local optima are global, and so
gradient descent from random initialization suffices (Ge, Lee,
and Ma 2016).

» For linear networks optimized with the squared loss, local
optima are global, but there are bad saddle points (Kawaguchi
2016).

» There are also a few works on residual networks (but | haven't
looked closely).

Cubic regularization and friends.

Recall how Nesterov-Polyak cubic regularization selects its next
iterate:

arg min <f(w) + <Vf(w), w' — W>

1 2 -1 ! ! L / 3
5 (VW)W = w)w = w) £ Zw - w]?),

where Hsz(x) — V2f(y)H <L|x—-y
iterate w satisfies

. after t iterations, some

O(1) 2 O(1)
273 Vf(w)i—tl/a.

This is better than what smooth gradient descent gave, but we have
to solve that (cubic polynomial!) minimization problem.

V(W) <

(Project idea.) Many papers either improve this method (Carmon
and Duchi 2018), or give alternative algorithms with similar
guarantees (Jin et al. 2017). (Crawl the citation graph from there
to find many more.)

Implicit regularization.

Another approach to deep learning is to show that gradient descent
not only minimizes empirical risk, but also finds low complexity
solutions.

(Project idea) For instance, crawl the citation graph from here:
(Bartlett, Foster, and Telgarsky 2017), (Soudry, Hoffer, and Srebro
2017), (Ji and Telgarsky 2018).

| am involved in this line of research so perhaps treat my comments
with skepticism.

Momentum and acceleration.
» Consider gradient descent with momentum: xg arbitrary, and
thereafter

Yir1 = xi — iV (x), Xit1 = Yiy1 + 7i(Yit1 — Vi)

» This seems to help in deep learning, but no one knows why.

» If set n; =1/ and v; = i/(i + 3) (constants matter),
f(x;) — infeex F(x) < O(1/t?) (“Nesterov's accelerated
method”). This rate is tight amongst algorithms outputting
iterates in the span of gradients, under some assumptions
people treat as standard.

» (Project idea) Accelerated methods (in both convex and
non-convex cases) are an active area of research.

Online learning and online-to-batch.

» We briefly discussed online learning, but didn't discuss how to
convert an online guarantee into a guarantee in expectation.
There are also versions of this in high probability.

» An algorithm is called “no regret” if
zl:ﬁ,-(w,-_l) — Mr/rg}r)vﬁ,-(w) = o(t).

Suppose ((x;, yi))i_; are drawn iid and define
li(w) = £({w, —x;y;)); we want a guarantee about
El(w) = El({w,—XY)).

» For random classifier w and average classifier w with convex /:

EZ.E(WFI) = Ezgi(wifl):
El(W) = 1EZE,~(W,-1),

Ef(ﬁ/) S 1E ZE;(W,;l).

Proof. First guarantee:
EZE(W,-_l) = ZW(W,-_l)
= ZEE(E(W;_1)|W,-_1)
= ZEE@“WIA, —Xiyi))|wi-1)
=]EZE,-(W,-_l).
(We had to be a little careful ;1ere and break out a conditional

expectation because w;_; depends on ((XJ,}/J))JI;i) Using this, the
randomize classifier satisfies

Ei(iv) = Ei > tw) = 1EZ€;(W,'—1),

and the averaged classifier satisfies (in the convex case, by Jensen's
inequality)

Ee(W) = Eﬂ(i > wi) < Ei > tw) = 1EZ€;(W,-_1).

1]

Adapting to problem geometry; proximal gradient and
mirror descent.

» Gradient descent iteration can be written as

1
arg min <<Vf(w), W'> + %HW — W,'H2> :

w’

» We can generalize this to proximal gradient update (to
minimize f + h):

1
in | h(w Vi(w),w') + —|lw—w?] .
argwrpm((W) + (V(w) W>+2n||w wi
How tractable this is depends on h; e.g., h = 0 is gradient
descent, h = ¢¢ (indicator on a convex set) we handled last
lecture, but another case is h(w') = ||w’||; (see lasso solvers
and “iterative shrinkage").

» Define divergence D(w', w) = ||w’ — w/||3/2; can use this
generalize gradient descent to mirror descent:

argwrlnin <77 <Vf(w), W/> + Dg(w', W)) ;

where Bregman divergence D, is of the form

Dy(w',w) = g(w) ~ (g(w) + (Ve(w).w' ~ w))

where g is convex, generally strongly convex. (Gradient descent
uses g(w) = ||w||3/2. Another key setting has

g(w) =>"; wiln(w;) and

Dy (', w) = KL(W', w) = 3w In(w}/w;).)

» Applying first-order optimality conditions to this minimization:
Vg(w') = Vg(w) —nVf(w),
which by properties of the Fenchel conjugate g*
w' = Vg"(Vg(w) — nVf(w)).

This gives the second standard form of mirror descent.

» Taking these ideas further gives “AdaGrad”. AFAICS, AdaGrad
and SVRG/SDCA were used as the basis of Adam/AdaDelta,
etc. (Project idea) study all this. ..

References

Bartlett, Peter, Dylan Foster, and Matus Telgarsky. 2017.
“Spectrally-Normalized Margin Bounds for Neural Networks.” NIPS.

Carmon, Yair, and John C. Duchi. 2018. “Analysis of Krylov Subspace
Solutions of Regularized Nonconvex Quadratic Problems.” In NIPS.

Ge, Rong, Jason D. Lee, and Tengyu Ma. 2016. “Matrix Completion Has
No Spurious Local Minimum.” In NIPS.

Ji, Ziwei, and Matus Telgarsky. 2018. “Gradient Descent Aligns the Layers
of Deep Linear Networks." arXiv:1810.02032 [cs.LG].

Jin, Chi, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I.
Jordan. 2017. "How to Escape Saddle Points Efficiently.” In ICML.

Kawaguchi, Kenji. 2016. “Deep Learning Without Poor Local Minima." In
NIPS.

Soudry, Daniel, Elad Hoffer, and Nathan Srebro. 2017. “The Implicit Bias

of Gradient Descent on Separable Data.” arXiv Preprint arXiv:1710.10345.

