Lecture 17. (Sketch.)

» No class November 7.

» Project proposals are up; meetings the week before
Thanksgiving.

Concentration and generalization.

Error decomposition from start of course:

A

R(F) — R(g) = R(F) — R(F) generalization
+ R(f) — R(f) optimization
+R(f) — R(f) concentration
= R(f) — R(g) approximation.

In this final statistical part of the course,

~ 17
R(F) = BA—F(X)Y),  R(F)= - S U—F(x)y).
i=1
where ((x;, yi))7_; are drawn iid from the same distribution as the E
in R; this provides the needed coherence between past and future.

In this final part of the course, we'll handle the generalization and
concentration terms.

Concentration?

» Concentration of measure is the study of distributions clumping
up (“concentrating”) when some operations are performed on
them.

» We have already seen that averages cause this behavior: we
know (from hwO and from the “approximate gradients” lecture)
that Y_; Z; lies in an interval of radius O(/n) rather than O(n)
when Z; are iid (or a Martingale).

> ((xi, i)y areiid, thus (Z;)[_; with Z; := {(—f(x;)y;) are iid
(for f fixed a priori), thus R(f) = n~1Y>; Z; should
concentrate around R(f) !

» “f fixed a priori” is crucial and we'll return to it next lecture.
(It's the difference between “generalization” and
“concentration”.)

» Concentration also appears in geometry; look up “isoperimetry”
(Project idea!).

Sums of random variables.

» Classical statistical asymptotics for iid X1, Xa, .. .:
1 t
- ZX,- 2 EX, (SLLN),
f Zx 4 N(EX;,1) (CLT),
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» In machine learning, care about finite time! Easy cases:

(LiL).

1. An easy case: an average of n N'(0,1) random variables is

N(0,1/n) !

2. Bernoulli X;: average of n is Binom(n, p)/n with expectation p
and variance p(1 — p)/n.

Not just concentrated: anti-concentrated. (Project idea:
learn more about this.)




2. Markov's inequality.
Let's get something for general random variables.

Theorem (Markov). For any nonnegative r.v. X and € > 0,

EX
PriX > ¢ < —.
€

Proof. Apply E to both sides of e1[X > €] < X.

Corollary. For any nonnegative, nondecreasing f > 0 and f(¢) > 0,

Ef(X)
PriX > ¢] < Flo)

Proof. Note Pr[X > €] < Pr[f(X) > f(e)] and apply Markov.

Remark (concentration via Markov and moments). Define

A, =n"1Y,(X; — EXj). For an inequality to verify concentration,
the simplest thing it can report is Pr[|A,| > €] goes to 0 as n
increases.

» Markov doesn't suffice:

E|A, E|X
Pr[|An| > €] < Adl _ EPG]
€

€

» Second moment gives a quantity which goes to 0 with n:

EA2 Var(Xl)
5

Pr[|An] > €] <

ne

» Similarly, for even integer p > 2,
E| Y, X — EX\[?
(ne)P ’
With some bloord, tears, and assumptions on max;<, E|X|?,

get Pr[A, > €] < O(1)/(ey/n)P.

Question: what is the right dependence on n?

Pr[|An| > €] <

3. Chernoff bounds and moment generating functions.

For many problems in ML, we'll be able to mimic the behavior of
Gaussians. What do Gaussians do?

» Since >; Xi/nis N'(0,1/n), and
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< e_62/(2‘72)/2,

thus Pr[>2; Xi/n > €] < exp(—ne?/2)/2 !

Remark. For pth moment bounded random variables, we got RHS

(ey/n)~P; Gaussians, we got exp(—(ey/n)?).

Let's try to get this for other random variables.

Given r.v. X, define moment generating function t — E exp(tX).

» Not always finite! Consider etX = i (t?!()’ and X symmetric:
need all even moments finite!

By Markov, since r — exp(tr) is nondecreasing for t > 0,

Pr[X > €] = |nf Pr[exp(tX) > exp(te)] < t>](c)Eei):)p((ti))<).

The Chernoff bounding technique applies this to
Ap =3 Xi —EX;)/n; if (X1,...,X,) iid,
]Eexp(tA,,)

_ - (Eexp((t/n) (X1 — EX1)))"
PriAy 2 e < | t>0 exp(te) ,!QE exp(tle) —

(This is still very abstract. . .)




To get mileage out of this, let's consider X subgaussian with
variance proxy o°:

Eexp(tX) < exp(t?0?/2).

Remark. Might seem abstract for now, but we'll show this holds
often in ML; e.g., for boudned random variables.

Lemma. If (X1,...,X,) respectively o-subgaussian, indepedent,
then S, := 3, Xi/n is o2-subgaussian with 02 = 3", 0% /n?.

Proof. For any t,

E exp(tS,) = HEexp(tX//n) < HEGXP(t2U,-2/(2n2))
= Eexp((f2/2)z:0i2/”2)-

Remark. Quick sanity check: “variance proxy” is scaling with
averages in the same way as a variance.

Theorem (Chernoff bound for subgaussian r.v.'s). Suppose
(X1,...,X,) independent and respectively o?-subgaussian. Then

- n%e?
exp | — )
=P 72 > 07

Proof. S, :="; Xi/n is o2-subgaussian with 02 = 3", 0% /n?, so

Pr
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where (x) took the minimum t = €/02 > 0 to the convex quadratic.

Remarks.

» (Sanity check.) This bound agrees with our earlier Gaussian
back-of-envelope calculation up to the multiplicative factor 1/2
(N(0,0?) is o>-subgaussian).

» (“Inverting” concentration/deviation inequalities). In learning
theory we often set the bound to ¢ and solve for ¢, giving

o2
Pr !5,, < \/22'20’ In <1>] >1-—4.
n 1)

» The In(1/9) in this inverted bound is important. Later we will
union bound over many (functions of) r.v.'s, getting a bound
with In(k/J) (for k union bounds).

4. Hoeffding's inequality.

Lemma (Hoeffding). If X € [a, b] as., then X —EX is
(b — a)?/4-subgaussian.

Proof. Omitted.

Theorem (Hoeffding inequality). Given iid (Xi,...,X,) with

X,' - [a,-, b,] a.s.,
<e 2n2e?
xp| —————= | .
=P TS — @)

Proof. Suffices to plug the Hoeffding Lemma into the subgaussian
Chernoff bound.

]

Pr {,17 > (Xi—EX;) >

Remark. For classification, setting Z; := 1[f(X;) # Y;]: with
probability at least 1 — 9,

~ 1 1 1
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Remarks.

» There are many other standard Chernoff bounds

» “Bernstein’s inequality” is like Hoeffding, but has a variance
term.

» Azuma and Freedman are Hoeffding and Bernstein for
Martingales; the Chernoff bounding technique is still used.
(Some people use many of these names interchangeably.)

» “McDiarmid’s inequality” will be used in the next few lectures;
it replaces ). Xi/n with any “stable” function of (Xi,...,X,).

» For Gaussian random variables, there are nice bounds.

» There are also interesting more sophisticated bounds for things
like matrices (doing better than union bound on all
coordinates), heavy-tailed distributions (changing the
estimator), . ..




