
Lecture 17. (Sketch.)
I No class November 7.
I Project proposals are up; meetings the week before

Thanksgiving.

Concentration and generalization.
Error decomposition from start of course:

R(f̂ )−R(ḡ) = R(f̂ )− R̂(f̂ ) generalization
+ R̂(f̂ )− R̂(f̄ ) optimization
+ R̂(f̄ )−R(f̄ ) concentration
= R(f̄ )−R(ḡ) approximation.

In this final statistical part of the course,

R(f ) = E`(−f (X )Y ), R̂(f ) = 1
n

n∑

i=1
`(−f (xi )yi ),

where ((xi , yi ))n
i=1 are drawn iid from the same distribution as the E

in R; this provides the needed coherence between past and future.

In this final part of the course, we’ll handle the generalization and
concentration terms.

Concentration?
I Concentration of measure is the study of distributions clumping

up (“concentrating”) when some operations are performed on
them.

I We have already seen that averages cause this behavior: we
know (from hw0 and from the “approximate gradients” lecture)
that ∑i Zi lies in an interval of radius O(√n) rather than O(n)
when Zi are iid (or a Martingale).

I ((xi , yi ))n
i=1 are iid, thus (Zi )n

i=1 with Zi := `(−f (xi )yi ) are iid
(for f fixed a priori), thus R̂(f ) = n−1∑

i Zi should
concentrate around R(f ) !

I “f fixed a priori” is crucial and we’ll return to it next lecture.
(It’s the difference between “generalization” and
“concentration”.)

I Concentration also appears in geometry; look up “isoperimetry”
(Project idea!).

Sums of random variables.
I Classical statistical asymptotics for iid X1,X2, . . .:
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Xi

a.s.= 1 (LiL).

I In machine learning, care about finite time! Easy cases:
1. An easy case: an average of n N (0, 1) random variables is
N (0, 1/n) !

2. Bernoulli Xi : average of n is Binom(n, p)/n with expectation p
and variance p(1− p)/n.

Not just concentrated: anti-concentrated. (Project idea:
learn more about this.)



2. Markov’s inequality.
Let’s get something for general random variables.

Theorem (Markov). For any nonnegative r.v. X and ε > 0,

Pr[X ≥ ε] ≤ EX
ε
.

Proof. Apply E to both sides of ε1[X ≥ ε] ≤ X .

Corollary. For any nonnegative, nondecreasing f ≥ 0 and f (ε) > 0,

Pr[X ≥ ε] ≤ Ef (X )
f (ε) .

Proof. Note Pr[X ≥ ε] ≤ Pr[f (X ) ≥ f (ε)] and apply Markov.

Remark (concentration via Markov and moments). Define
An = n−1∑

i (Xi − EX1). For an inequality to verify concentration,
the simplest thing it can report is Pr[|An| > ε] goes to 0 as n
increases.
I Markov doesn’t suffice:

Pr[|An| ≥ ε] ≤
E|An|
ε

= E|X1|
ε

.

I Second moment gives a quantity which goes to 0 with n:

Pr[|An| ≥ ε] ≤
EA2

n
ε2

= Var(X1)
nε2 .

I Similarly, for even integer p ≥ 2,

Pr[|An| ≥ ε] ≤
E|∑i Xi − EX1|p

(nε)p .

With some bloord, tears, and assumptions on maxi≤p E|X |p,
get Pr[An ≥ ε] ≤ O(1)/(ε√n)p.

Question: what is the right dependence on n?

3. Chernoff bounds and moment generating functions.
For many problems in ML, we’ll be able to mimic the behavior of
Gaussians. What do Gaussians do?
I Since ∑i Xi/n is N (0, 1/n), and

Pr[N (0, σ2) ≥ ε] = 1
σ
√
2π

∫ ∞

ε
e−x2/(2σ2) dx

= 1
σ
√
2π

∫ ∞

0
e−(x+ε)2/(2σ2) dx

= e−ε2/(2σ2)

σ
√
2π

∫ ∞

0
e−x2/(2σ2)e−xε/σ2 dx

≤ e−ε2/(2σ2)/2,

thus Pr[∑i Xi/n ≥ ε] ≤ exp(−nε2/2)/2 !

Remark. For pth moment bounded random variables, we got RHS
(ε√n)−p; Gaussians, we got exp(−(ε√n)2).

Let’s try to get this for other random variables.

Given r.v. X , define moment generating function t 7→ E exp(tX ).

I Not always finite! Consider etX = ∑
i≥0

(tX)i

i! and X symmetric:
need all even moments finite!

By Markov, since r 7→ exp(tr) is nondecreasing for t ≥ 0,

Pr[X ≥ ε] = inf
t≥0

Pr[exp(tX ) ≥ exp(tε)] ≤ inf
t≥0

E exp(tX )
exp(tε) .

The Chernoff bounding technique applies this to
An := ∑

i (Xi − EXi )/n; if (X1, . . . ,Xn) iid,

Pr[An ≥ ε] ≤ inf
t≥0

E exp(tAn)
exp(tε) = inf

t≥0

(
E exp((t/n)(X1 − EX1))

)n

exp(tε) .

(This is still very abstract. . . )



To get mileage out of this, let’s consider X subgaussian with
variance proxy σ2:

E exp(tX ) ≤ exp(t2σ2/2).

Remark. Might seem abstract for now, but we’ll show this holds
often in ML; e.g., for boudned random variables.

Lemma. If (X1, . . . ,Xn) respectively σ2
i -subgaussian, indepedent,

then Sn := ∑
i Xi/n is σ2-subgaussian with σ2 = ∑

i σ
2
i /n2.

Proof. For any t,

E exp(tSn) =
∏

i
E exp(tXi/n) ≤

∏

i
E exp(t2σ2

i /(2n2))

= E exp((t2/2)
∑

i
σ2

i /n2).

Remark. Quick sanity check: “variance proxy” is scaling with
averages in the same way as a variance.

Theorem (Chernoff bound for subgaussian r.v.’s). Suppose
(X1, . . . ,Xn) independent and respectively σ2

i -subgaussian. Then
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)
.

Proof. Sn := ∑
i Xi/n is σ2-subgaussian with σ2 = ∑

i σ
2
i /n2, so

Pr[Sn ≥ ε] ≤ inf
t≥0

E exp(tZ )/ exp(tε) ≤ inf
t≥0
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)
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
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,

where (?) took the minimum t = ε/σ2 ≥ 0 to the convex quadratic.

Remarks.
I (Sanity check.) This bound agrees with our earlier Gaussian

back-of-envelope calculation up to the multiplicative factor 1/2
(N (0, σ2) is σ2-subgaussian).

I (“Inverting” concentration/deviation inequalities). In learning
theory we often set the bound to δ and solve for ε, giving
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
Sn ≤

√
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n2 ln
(1
δ

)
 ≥ 1− δ.

I The ln(1/δ) in this inverted bound is important. Later we will
union bound over many (functions of) r.v.’s, getting a bound
with ln(k/δ) (for k union bounds).

4. Hoeffding’s inequality.
Lemma (Hoeffding). If X ∈ [a, b] a.s., then X − EX is
(b − a)2/4-subgaussian.

Proof. Omitted.

Theorem (Hoeffding inequality). Given iid (X1, . . . ,Xn) with
Xi ∈ [ai , bi ] a.s.,

Pr


1

n
∑

i
(Xi − EXi ) ≥ ε


 ≤ exp

(
− 2n2ε2∑

i (bi − ai )2

)
.

Proof. Suffices to plug the Hoeffding Lemma into the subgaussian
Chernoff bound.

Remark. For classification, setting Zi := 1[f (Xi ) 6= Yi ]: with
probability at least 1− δ,

Rz(f )− R̂z(f ) = EZ1 −
1
n

n∑

i=1
Zi ≤

√
1
2n ln

(1
δ

)
.



Remarks.
I There are many other standard Chernoff bounds

I “Bernstein’s inequality” is like Hoeffding, but has a variance
term.

I Azuma and Freedman are Hoeffding and Bernstein for
Martingales; the Chernoff bounding technique is still used.
(Some people use many of these names interchangeably.)

I “McDiarmid’s inequality” will be used in the next few lectures;
it replaces

∑
i Xi/n with any “stable” function of (X1, . . . ,Xn).

I For Gaussian random variables, there are nice bounds.

I There are also interesting more sophisticated bounds for things
like matrices (doing better than union bound on all
coordinates), heavy-tailed distributions (changing the
estimator), . . .


