Lecture 17. (Sketch.)

- No class November 7.
- Project proposals are up; meetings the week before Thanksgiving.

Concentration and generalization.

Error decomposition from start of course:

$$
\begin{aligned}
\mathcal{R}(\hat{f})-\mathcal{R}(\bar{g}) & =\mathcal{R}(\hat{f})-\widehat{\mathcal{R}}(\hat{f}) & & \text { generalization } \\
& +\widehat{\mathcal{R}}(\hat{f})-\widehat{\mathcal{R}}(\bar{f}) & & \text { optimization } \\
& +\widehat{\mathcal{R}}(\bar{f})-\mathcal{R}(\bar{f}) & & \text { concentration } \\
& =\mathcal{R}(\bar{f})-\mathcal{R}(\bar{g}) & & \text { approximation. }
\end{aligned}
$$

In this final statistical part of the course,

$$
\mathcal{R}(f)=\mathbb{E} \ell(-f(X) Y), \quad \widehat{\mathcal{R}}(f)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(-f\left(x_{i}\right) y_{i}\right),
$$

where $\left(\left(x_{i}, y_{i}\right)\right)_{i=1}^{n}$ are drawn iid from the same distribution as the \mathbb{E} in \mathcal{R}; this provides the needed coherence between past and future.

In this final part of the course, we'll handle the generalization and concentration terms.

Sums of random variables.

- Classical statistical asymptotics for iid X_{1}, X_{2}, \ldots :

$$
\begin{gather*}
\frac{1}{t} \sum_{i=1}^{t} X_{i} \xrightarrow{\text { a.s. }} \mathbb{E} X_{1} \tag{SLLN}\\
\frac{1}{\sigma \sqrt{t}} \sum_{i=1}^{t} X_{i} \xrightarrow{\mathrm{~d}} \mathcal{N}\left(\mathbb{E} X_{1}, 1\right) \tag{CLT}\\
\limsup _{t} \frac{1}{\sigma \sqrt{2 t \ln \ln t}} \sum_{i=1}^{t} X_{i} \stackrel{\text { a.s. }}{=} 1 \tag{LiL}
\end{gather*}
$$

- In machine learning, care about finite time! Easy cases:

1. An easy case: an average of $n \mathcal{N}(0,1)$ random variables is $\mathcal{N}(0,1 / n)$!
2. Bernoulli X_{i} : average of n is $\operatorname{Binom}(n, p) / n$ with expectation p and variance $p(1-p) / n$.

Not just concentrated: anti-concentrated. (Project idea: learn more about this.)
2. Markov's inequality.

Let's get something for general random variables.
Theorem (Markov). For any nonnegative r.v. X and $\epsilon>0$,

$$
\operatorname{Pr}[X \geq \epsilon] \leq \frac{\mathbb{E} X}{\epsilon}
$$

Proof. Apply \mathbb{E} to both sides of $\epsilon \mathbb{1}[X \geq \epsilon] \leq X$.
Corollary. For any nonnegative, nondecreasing $f \geq 0$ and $f(\epsilon)>0$,

$$
\operatorname{Pr}[X \geq \epsilon] \leq \frac{\mathbb{E} f(X)}{f(\epsilon)}
$$

Proof. Note $\operatorname{Pr}[X \geq \epsilon] \leq \operatorname{Pr}[f(X) \geq f(\epsilon)]$ and apply Markov.

3. Chernoff bounds and moment generating functions.

For many problems in ML, we'll be able to mimic the behavior of Gaussians. What do Gaussians do?

- Since $\sum_{i} X_{i} / n$ is $\mathcal{N}(0,1 / n)$, and

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{N}\left(0, \sigma^{2}\right) \geq \epsilon\right] & =\frac{1}{\sigma \sqrt{2 \pi}} \int_{\epsilon}^{\infty} e^{-x^{2} /\left(2 \sigma^{2}\right)} \mathrm{d} x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{\infty} e^{-(x+\epsilon)^{2} /\left(2 \sigma^{2}\right)} \mathrm{d} x \\
& =\frac{e^{-\epsilon^{2} /\left(2 \sigma^{2}\right)}}{\sigma \sqrt{2 \pi}} \int_{0}^{\infty} e^{-x^{2} /\left(2 \sigma^{2}\right)} e^{-x \epsilon / \sigma^{2}} \mathrm{~d} x \\
& \leq e^{-\epsilon^{2} /\left(2 \sigma^{2}\right)} / 2
\end{aligned}
$$

thus $\operatorname{Pr}\left[\sum_{i} X_{i} / n \geq \epsilon\right] \leq \exp \left(-n \epsilon^{2} / 2\right) / 2!$
Remark. For p th moment bounded random variables, we got RHS $(\epsilon \sqrt{n})^{-p}$; Gaussians, we got $\exp \left(-(\epsilon \sqrt{n})^{2}\right)$.

Remark (concentration via Markov and moments). Define $A_{n}=n^{-1} \sum_{i}\left(X_{i}-\mathbb{E} X_{1}\right)$. For an inequality to verify concentration, the simplest thing it can report is $\operatorname{Pr}\left[\left|A_{n}\right|>\epsilon\right]$ goes to 0 as n increases.

- Markov doesn't suffice:

$$
\operatorname{Pr}\left[\left|A_{n}\right| \geq \epsilon\right] \leq \frac{\mathbb{E}\left|A_{n}\right|}{\epsilon}=\frac{\mathbb{E}\left|X_{1}\right|}{\epsilon}
$$

- Second moment gives a quantity which goes to 0 with n :

$$
\operatorname{Pr}\left[\left|A_{n}\right| \geq \epsilon\right] \leq \frac{\mathbb{E} A_{n}^{2}}{\epsilon^{2}}=\frac{\operatorname{Var}\left(X_{1}\right)}{n \epsilon^{2}}
$$

- Similarly, for even integer $p \geq 2$,

$$
\operatorname{Pr}\left[\left|A_{n}\right| \geq \epsilon\right] \leq \frac{\mathbb{E}\left|\sum_{i} X_{i}-\mathbb{E} X_{1}\right|^{p}}{(n \epsilon)^{p}}
$$

With some bloord, tears, and assumptions on $\max _{i \leq p} \mathbb{E}|X|^{p}$, get $\operatorname{Pr}\left[A_{n} \geq \epsilon\right] \leq \mathcal{O}(1) /(\epsilon \sqrt{n})^{p}$.
Question: what is the right dependence on n ?

Let's try to get this for other random variables.
Given r.v. X, define moment generating function $t \mapsto \mathbb{E} \exp (t X)$.

- Not always finite! Consider $e^{t X}=\sum_{i>0} \frac{(t X)^{i}}{i!}$ and X symmetric: need all even moments finite!
By Markov, since $r \mapsto \exp (t r)$ is nondecreasing for $t \geq 0$,

$$
\operatorname{Pr}[X \geq \epsilon]=\inf _{t \geq 0} \operatorname{Pr}[\exp (t X) \geq \exp (t \epsilon)] \leq \inf _{t \geq 0} \frac{\mathbb{E} \exp (t X)}{\exp (t \epsilon)}
$$

The Chernoff bounding technique applies this to $A_{n}:=\sum_{i}\left(X_{i}-\mathbb{E} X_{i}\right) / n$; if $\left(X_{1}, \ldots, X_{n}\right)$ iid,

$$
\operatorname{Pr}\left[A_{n} \geq \epsilon\right] \leq \inf _{t \geq 0} \frac{\mathbb{E} \exp \left(t A_{n}\right)}{\exp (t \epsilon)}=\inf _{t \geq 0} \frac{\left(\mathbb{E} \exp \left((t / n)\left(X_{1}-\mathbb{E} X_{1}\right)\right)\right)^{n}}{\exp (t \epsilon)}
$$

(This is still very abstract. . .)

To get mileage out of this, let's consider X subgaussian with variance proxy σ^{2} :

$$
\mathbb{E} \exp (t X) \leq \exp \left(t^{2} \sigma^{2} / 2\right)
$$

Remark. Might seem abstract for now, but we'll show this holds often in ML; e.g., for boudned random variables.
Lemma. If $\left(X_{1}, \ldots, X_{n}\right)$ respectively σ_{i}^{2}-subgaussian, indepedent, then $S_{n}:=\sum_{i} X_{i} / n$ is σ^{2}-subgaussian with $\sigma^{2}=\sum_{i} \sigma_{i}^{2} / n^{2}$.
Proof. For any t,

$$
\begin{aligned}
\mathbb{E} \exp \left(t S_{n}\right) & =\prod_{i} \mathbb{E} \exp \left(t X_{i} / n\right) \leq \prod_{i} \mathbb{E} \exp \left(t^{2} \sigma_{i}^{2} /\left(2 n^{2}\right)\right) \\
& =\mathbb{E} \exp \left(\left(t^{2} / 2\right) \sum_{i} \sigma_{i}^{2} / n^{2}\right)
\end{aligned}
$$

Remark. Quick sanity check: "variance proxy" is scaling with averages in the same way as a variance.

Remarks.

- (Sanity check.) This bound agrees with our earlier Gaussian back-of-envelope calculation up to the multiplicative factor $1 / 2$ $\left(\mathcal{N}\left(0, \sigma^{2}\right)\right.$ is σ^{2}-subgaussian).
- ("Inverting" concentration/deviation inequalities). In learning theory we often set the bound to δ and solve for ϵ, giving

$$
\operatorname{Pr}\left[S_{n} \leq \sqrt{\frac{2 \sum_{i} \sigma_{i}^{2}}{n^{2}} \ln \left(\frac{1}{\delta}\right)}\right] \geq 1-\delta
$$

- The $\ln (1 / \delta)$ in this inverted bound is important. Later we will union bound over many (functions of) r.v.'s, getting a bound with $\ln (k / \delta)$ (for k union bounds).

Theorem (Chernoff bound for subgaussian r.v.'s). Suppose $\left(X_{1}, \ldots, X_{n}\right)$ independent and respectively σ_{i}^{2}-subgaussian. Then

$$
\operatorname{Pr}\left[\frac{1}{n} \sum_{i} X_{i} \geq \epsilon\right] \leq \exp \left(-\frac{n^{2} \epsilon^{2}}{2 \sum_{i} \sigma_{i}^{2}}\right)
$$

Proof. $S_{n}:=\sum_{i} X_{i} / n$ is σ^{2}-subgaussian with $\sigma^{2}=\sum_{i} \sigma_{i}^{2} / n^{2}$, so

$$
\begin{aligned}
\operatorname{Pr}\left[S_{n} \geq \epsilon\right] & \leq \inf _{t \geq 0} \mathbb{E} \exp (t Z) / \exp (t \epsilon) \leq \inf _{t \geq 0} \exp \left(t^{2} \sigma^{2} / 2-t \epsilon\right) \\
& \stackrel{(\star)}{=} \exp \left(\frac{\epsilon^{2}}{\sigma^{4}}\left(\frac{\sigma^{2}}{2}\right)-\frac{\epsilon^{2}}{\sigma^{2}}\right)=\exp \left(-\frac{\epsilon^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

where (\star) took the minimum $t=\epsilon / \sigma^{2} \geq 0$ to the convex quadratic.

4. Hoeffding's inequality.

Lemma (Hoeffding). If $X \in[a, b]$ a.s., then $X-\mathbb{E} X$ is $(b-a)^{2} / 4$-subgaussian.

Proof. Omitted.
Theorem (Hoeffding inequality). Given iid $\left(X_{1}, \ldots, X_{n}\right)$ with $X_{i} \in\left[a_{i}, b_{i}\right]$ a.s.,

$$
\operatorname{Pr}\left[\frac{1}{n} \sum_{i}\left(X_{i}-\mathbb{E} X_{i}\right) \geq \epsilon\right] \leq \exp \left(-\frac{2 n^{2} \epsilon^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Proof. Suffices to plug the Hoeffding Lemma into the subgaussian Chernoff bound.

Remark. For classification, setting $Z_{i}:=\mathbb{1}\left[f\left(X_{i}\right) \neq Y_{i}\right]$: with probability at least $1-\delta$,

$$
\mathcal{R}_{\mathrm{z}}(f)-\widehat{\mathcal{R}}_{\mathrm{z}}(f)=\mathbb{E} Z_{1}-\frac{1}{n} \sum_{i=1}^{n} Z_{i} \leq \sqrt{\frac{1}{2 n} \ln \left(\frac{1}{\delta}\right)}
$$

Remarks.

- There are many other standard Chernoff bounds
- "Bernstein's inequality" is like Hoeffding, but has a variance term.
- Azuma and Freedman are Hoeffding and Bernstein for Martingales; the Chernoff bounding technique is still used. (Some people use many of these names interchangeably.)
- "McDiarmid's inequality" will be used in the next few lectures; it replaces $\sum_{i} X_{i} / n$ with any "stable" function of $\left(X_{1}, \ldots, X_{n}\right)$.
- For Gaussian random variables, there are nice bounds.
- There are also interesting more sophisticated bounds for things like matrices (doing better than union bound on all coordinates), heavy-tailed distributions (changing the estimator), .

