Lecture 18. (Sketch.)

» No class November 7; instead, I'll hold office hours 5-8pm and
you can talk to me about projects as long as you wish (and no
one kicks you out).

» Project proposal is due Wednesday, November 14 at 3pm.

» See the piazza for project meeting signups.

1. Hoeffding, overfitting, and uniform deviations.

Hoeffding gave us: with probability at least 1 — § over an iid draw
of (Z1,...,2Z,) with Z; € [a, b] ass.,

EZ < ,1722,+(b—a) '"(;r{é).

Applications for a fixed f:
» Set Z; = 1[f(x;) # yi] € [0,1]; with pr >1—§

1/5 /

» Set Z; :=U(—f(xi)yi) € [a, b]; with pr > 1 —

'”(21,{5) — Ru(F)+(b—a) '”(;r{é).

R.(f)=Ez < Z+

1
Rg(f) =Ez < ;Z,-+(b—a)

Remark. For both to hold simultaneously, we need to apply union
bound.

Remark. Suppose ¢ is p-lipschitz and |f(x)| < R. Then
[{(=F(x)y) = £0)| < p-| = F(x)y = O] < pR.

Thus ¢(—f(x)y) € [¢(0) — pR, £(0) + pR].

So we could have instead said this:

» Suppose |f| < R and ¢ is p-Lipschitz; with pr > 1 —§,

Ri(f) < RolF) + pRy| L)

Why are we saying “fixed f"7
Indeed, why are we fixing it before the randomization?

» Example. Consider a classifier f which memorizes training
data S, and outputs —1 otherwise:

Fx)m {1 X TR ES,
—1 otherwise.
Consider two situations with Pr[Y = +1] = 1.

» Suppose marginal on X has/\finAite support. Eventually, this
support is memorized and R,(f) = 0 = R,(f).

> Suppose marginal on X is continuous. With probability 1,
R,(F) =0 but Ry(F) =11
What broke Hoeffding’s inequality (and its proof)?
> 7 is a random variable depending on S = ((x;, yi))"_;. Even if

((xi, yi))7_; are independent, the new random variables
Z; = 1[f(x;) # y;] are not !




These are bad examples of overfitting: R(7) is small, but R(f) is
large.

Remarks.

» Can't we fix independence with two samples (train f with S,

estimate R(f) with S,)?

» Yes, but we're using half as much data. (Project idea.) Look
into (cross-)validation, for which there is still little theory.

» In SGD, didn't we have this correlation issue? Yes, but we still
got a bound by (a) restricting the way the algorithm interacts
with the data, (b) using a corresponding refined concentration
inequality (Azuma for martingales).

Standard fix in learning theory: prove

Pr[;ngR(f) ~R(F)>e<....

» This is a uniform deviation or generalization bound: it
controls the random variable supc  R(f) — R, namely it
controlls the devations (R(f) — R(f))rer uniformly over F.

Remarks.

» This bound will therefore hold for not just the output of the
algorithm but everything else in F.

» This may seem brutal and loose. Sometimes it is! To do
this properly, the choice of F should be well-adapted to the
algorithm and how it interacts with data; then it can be tight.

» There are other approaches: stability (Bousquet and Elisseeff
2002), custom analyses within the algorithm (SGD/Azuma,
ordinary least squares, ...).

» Measure theory note: that uniform r.v. is broken. ..

2. Finite classes and primitive covers.

Theorem. Let F be given, and suppose ¢(f(x),y) € [a, b] for all
f € F. With probability at least 1 — 6, every f € F satisfies

RA(F) < R+ (b— ) 2L II0)

Proof. Suppose |F| < oo, since otherwise bound is immediate.
Define ¢’ :=40/|F| and € := (b — In(1/6")/(2n); for any fixed
ferF,

Pr[Ru(f) = Re(f) > | < 4"

Thus (“by union bound")
Pr|3f € F.Ry(f) = Ro(f) > €| < 3 Pr|Ry(f) = R(F) > ]

feF
< |F|§' = 6.

Remarks.

» We can be adaptive even here by choosing non-uniform d¢

» When is this bound tight? Just like the Venn Diagram: when
the failure events inhabit different parts of the sample space.




Finite classes are most often invoked by first discretizing or
covering the function class.

Definition. G is a primitive e-cover of F over S if: for all f € F,
there exists gr € G so that sup,cs|f(z) — gr(2)| < e

Remark.

» So: we take an infinite F, and work with its discretation/cover
G.

P Later we'll get to “real” covers, which have much better
bounds.

» These primitive covers are improper: we do not require G C F;
we could be covering decision trees with neural networks!

Define £ o F := {(x,y) — £(f(x),y) : f € F}; we'll often work
with covers of £ o F.

Theorem (primitive bound for primitive convers). Suppose ¢ o F
has primitive e-covers of cardinality N, over a set S, and

lof € a,b] over S. For any € > 0, with probability > 1 — § over
an iid draw from a distribution supported on S,

\/In N + In(1/6)

sup Ry(f) — Ry(f) < 21+ (b — a)

feF 2n

Proof. Let G, denote a minimal primitive e-cover with cardinality
< N,. For any g € G, there must exist h:= £ o f with

sup,cs |h(z) — g(z)| < ¢, since otherwise g isn't contributing to the
e-cover and G, is not minimal; therefore

sup |g(z) — g(2')|

z,z’€S
< sup [g(z) — h(z)| + |h(z) — h(Z')| + |h(Z') — g(Z')]
z,z/'€
<2+ (b—a).
Remarks. References.

» If 7 is Lipschitz, we can convert between covers of F and £ o F
easily. Indeed, if F is linear with / norm 1, S has /; norm 1,
and ¢ is 1-Lipschitz,

[(w, =) =W, =3y D) < [ (w, =)=y ) | < [lw—w].

Consequently, N, = O(1/e9) suffices, and In N. = dO(In(1/¢)).

With other tools, we will later remove the dimension
dependence.

» If ¢ is not Lipschitz, if for instance it is discontinuous,
catastrophically bad things can happen. E.g., if
0(f(x),y) = 1[f(x) # y], then in the above setting the only
primitive e-cover with € < 2 has cardinality equal to R, and
In N = o0 !

» We'll fix these issues in subsequent lectures (with “real” covers
and other tools as well).

Bousquet, Olivier, and André Elisseeff. 2002. “Stability and
Generalization.” JMLR 2: 499-526.




