
Lecture 18. (Sketch.)
I No class November 7; instead, I’ll hold office hours 5-8pm and

you can talk to me about projects as long as you wish (and no
one kicks you out).

I Project proposal is due Wednesday, November 14 at 3pm.
I See the piazza for project meeting signups.

1. Hoeffding, overfitting, and uniform deviations.
Hoeffding gave us: with probability at least 1− δ over an iid draw
of (Z1, . . . ,Zn) with Zi ∈ [a, b] a.s.,

EZ ≤ 1
n
∑

i
Zi + (b − a)

√
ln(1/δ)
2n .

Applications for a fixed f :
I Set Zi := 1[f (xi) 6= yi ] ∈ [0, 1]; with pr ≥ 1− δ,

Rz(f ) = EZ1 ≤
1
nZi +

√
ln(1/δ)
2n = R̂z(f ) +

√
ln(1/δ)
2n .

I Set Zi := `(−f (xi)yi) ∈ [a, b]; with pr ≥ 1− δ,

R`(f ) = EZ1 ≤
1
nZi+(b−a)

√
ln(1/δ)
2n = R̂`(f )+(b−a)

√
ln(1/δ)
2n .

Remark. For both to hold simultaneously, we need to apply union
bound.

Remark. Suppose ` is ρ-lipschitz and |f (x)| ≤ R. Then

|`(−f (x)y)− `(0)| ≤ ρ · | − f (x)y − 0| ≤ ρR.

Thus `(−f (x)y) ∈ [`(0)− ρR, `(0) + ρR].

So we could have instead said this:
I Suppose |f | ≤ R and ` is ρ-Lipschitz; with pr ≥ 1− δ,

R`(f ) ≤ R̂`(f ) + ρR
√

2 ln(1/δ)
n .

Why are we saying “fixed f ”?

Indeed, why are we fixing it before the randomization?
I Example. Consider a classifier f̂ which memorizes training

data S, and outputs −1 otherwise:

f̂ (x) :=





yi x = xi , xi ∈ S,
−1 otherwise.

Consider two situations with Pr[Y = +1] = 1.
I Suppose marginal on X has finite support. Eventually, this

support is memorized and R̂z(f̂ ) = 0 = Rz(f̂ ).
I Suppose marginal on X is continuous. With probability 1,
R̂z(f̂ ) = 0 but Rz(f̂ ) = 1 !

What broke Hoeffding’s inequality (and its proof)?
I f̂ is a random variable depending on S = ((xi , yi))n

i=1. Even if
((xi , yi))n

i=1 are independent, the new random variables
Zi := 1[f̂ (xi) 6= yi ] are not !



These are bad examples of overfitting: R̂(f̂ ) is small, but R(f̂ ) is
large.

Remarks.
I Can’t we fix independence with two samples (train f̂ with S1,

estimate R̂(f̂ ) with S2)?
I Yes, but we’re using half as much data. (Project idea.) Look

into (cross-)validation, for which there is still little theory.

I In SGD, didn’t we have this correlation issue? Yes, but we still
got a bound by (a) restricting the way the algorithm interacts
with the data, (b) using a corresponding refined concentration
inequality (Azuma for martingales).

Standard fix in learning theory: prove
Pr[sup

f ∈F
R(f )− R̂(f ) > ε] ≤ . . . .

I This is a uniform deviation or generalization bound: it
controls the random variable supf ∈F R(f )− R̂, namely it
controlls the devations (R(f )− R̂(f ))f ∈F uniformly over F .

Remarks.
I This bound will therefore hold for not just the output of the

algorithm but everything else in F .
I This may seem brutal and loose. Sometimes it is! To do

this properly, the choice of F should be well-adapted to the
algorithm and how it interacts with data; then it can be tight.

I There are other approaches: stability (Bousquet and Elisseeff
2002), custom analyses within the algorithm (SGD/Azuma,
ordinary least squares, . . . ).

I Measure theory note: that uniform r.v. is broken. . .

2. Finite classes and primitive covers.
Theorem. Let F be given, and suppose `(f (x), y) ∈ [a, b] for all
f ∈ F . With probability at least 1− δ, every f ∈ F satisfies

R`(f ) ≤ R̂`(f ) + (b − a)
√

ln |F|+ ln(1/δ)
2n .

Proof. Suppose |F| <∞, since otherwise bound is immediate.
Define δ′ := δ/|F| and ε := (b − a)

√
ln(1/δ′)/(2n); for any fixed

f ∈ F ,
Pr
[
R`(f )− R̂`(f ) ≥ ε

]
≤ δ′.

Thus (“by union bound”)

Pr
[
∃f ∈ F �R`(f )− R̂`(f ) ≥ ε

]
≤
∑

f ∈F
Pr
[
R`(f )− R̂`(f ) ≥ ε

]

≤ |F|δ′ = δ.

Remarks.
I We can be adaptive even here by choosing non-uniform δf

with ∑f ∈F δf = δ.
I When is this bound tight? Just like the Venn Diagram: when

the failure events inhabit different parts of the sample space.



Finite classes are most often invoked by first discretizing or
covering the function class.

Definition. G is a primitive ε-cover of F over S if: for all f ∈ F ,
there exists gf ∈ G so that supz∈S |f (z)− gf (z)| ≤ ε.
Remark.
I So: we take an infinite F , and work with its discretation/cover

G .
I Later we’ll get to “real” covers, which have much better

bounds.
I These primitive covers are improper: we do not require G ⊆ F ;

we could be covering decision trees with neural networks!

Define ` ◦ F :=
{
(x , y) 7→ `(f (x), y) : f ∈ F}; we’ll often work

with covers of ` ◦ F .
Theorem (primitive bound for primitive convers). Suppose ` ◦ F
has primitive ε-covers of cardinality Nε over a set S, and
` ◦ f ∈ [a, b] over S. For any ε > 0, with probability ≥ 1− δ over
an iid draw from a distribution supported on S,

sup
f ∈F
R`(f )− R̂`(f ) ≤ 2η + (b − a)

√
ln Nε + ln(1/δ)

2n .

Proof. Let Gε denote a minimal primitive ε-cover with cardinality
≤ Nε. For any g ∈ Gε, there must exist h := ` ◦ f with
supz∈S |h(z)− g(z)| ≤ ε, since otherwise g isn’t contributing to the
ε-cover and Gε is not minimal; therefore

sup
z,z ′∈S

|g(z)− g(z ′)|

≤ sup
z,z ′∈S

|g(z)− h(z)|+ |h(z)− h(z ′)|+ |h(z ′)− g(z ′)|

≤ 2ε+ (b − a).

Remarks.
I If ` is Lipschitz, we can convert between covers of F and ` ◦ F

easily. Indeed, if F is linear with l2 norm 1, S has l2 norm 1,
and ` is 1-Lipschitz,

|`(〈w ,−xy〉)−`(
〈
w ′,−xy

〉
)| ≤ | 〈w ,−xy〉−

〈
w ′, xy

〉
| ≤ ‖w−w ′‖.

Consequently, Nε = O(1/εd) suffices, and ln Nε = dO(ln(1/ε)).
With other tools, we will later remove the dimension
dependence.

I If ` is not Lipschitz, if for instance it is discontinuous,
catastrophically bad things can happen. E.g., if
`(f (x), y) = 1[f (x) 6= y ], then in the above setting the only
primitive ε-cover with ε < 2 has cardinality equal to R, and
ln Nε =∞ !

I We’ll fix these issues in subsequent lectures (with “real” covers
and other tools as well).
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