
Lecture 19. (Sketch.)
I No class this Wednesday, November 7!
I I’ll be in my office today 5-8pm if anyone wants to discuss

course project.
I Please sign up for project proposal meetings — you don’t get

full credit without it.
I Homework 2 should go out later today.

1. Recap from past two lectures.
Hoeffding lets us control a single random variable: with probability
at least 1− δ over an iid draw of (Z1, . . . ,Zn) with Zi ∈ [a, b] a.s.,

EZ ≤ 1
n
∑

i
Zi + (b − a)

√
ln(1/δ)
2n .

I From here, we can bound a single function’s risk by defining
Zi := `(f̂ (xi), yi).

I If f̂ depends on ((xi , yi))n
i=1 (e.g., it is the output of a training

algorithm), then (Z1, . . . ,Zn) as defined above are no longer
necessarily iid!

The standard fix in learning theory is a uniform deviation bound
over a class of functions F : e.g., a bound of the form

Pr
[

sup
f ∈F
R`(f )− R̂`(f ) > ε

]
≤ some function of F , `, ε, n.

So far, we have a bound based on |F|:
I Let F , `, and a probability distribution be given so that
`(f (x), y) ∈ [a, b] almost surely. With probability at least
1− δ, for every f ∈ F ,

R`(f ) ≤ R̂`(f ) + (b − a)
√

ln |F|+ ln(1/δ)
2n .

I If |F| =∞, we can still use this via discretization. The most
naive discretization (“primitive cover” from last class) requires
a finite subset G so that ∀f ∈ F , ∃g ∈ G ,
supx |g(x)− f (x)| ≤ ε. If F denotes linear classifiers, and
ε < 2, then |G | =∞ is necessary!
I Is there some way to work with only the behavior on the

training set, rather than all possible points?

2. Generalization without concentration: symmetrization.
The standard approach has two key steps. Some notation:

Z r.v.; e.g., (x , y),
F functions; e.g., f (Z ) = `(g(X ),Y ),
E expectation over Z ,
En expectation over (Z1, . . . ,Zn),
Ef = Ef (Z ),

Ênf = 1
n
∑

i
f (Zi).

In this notation, R`(g) = E` ◦ g and R̂`(g) = Ê` ◦ g .



First key step: introduce another sample (“ghost sample”). Let
(Z ′

1, . . . ,Z ′
n) be another iid draw from Z ; define E′

n and Ê′
n

analogously.

Lemma 1. En
(
supf ∈F Ef − Ênf

)
≤ EnE′

n
(
supf ∈F Ê′

nf − Ênf
)
.

Proof. Fix any ε > 0 and apx max fε ∈ F ; then

En

(
sup
f ∈F

Ef − Ênf
)
≤ En

(
Efε − Ênfε

)
+ ε

= En
(
E′

nÊ′
nfε − Ênfε

)
+ ε

= E′
nEn

(
Ê′

nfε − Ênfε
)

+ ε

≤ E′
nEn

(
sup
f ∈F

Ê′
nf − Ênf

)
+ ε

Result follows since ε > 0 arbitrary.

Remarks.
I Notice we are working only in expectation for now. In the

subsequent section, we’ll get high probability bounds. But
supf ∈F Ef − E′

nf is a random variable; can describe it in many
other ways too! (E.g., “asymptotic normality”.)

I This lemma says we can instead work with two samples.
Working with two samples could have been our starting point:
by itself it is a meaningful and interpretable quantity!

Key step 2: swap points between the two samples; a magic trick
with random signs boils this down into a manageable quantity.

Fix a vector ε ∈ {−1,+1}n and define a r.v. (Ui ,U ′
i ) := (Zi ,Z ′

i ) if
ε = 1 and (Ui ,U ′

i ) = (Z ′
i ,Zi) if ε = −1. Then

EnE′
n

(
sup
f ∈F

Ê′
nf − Ênf

)
= EnE′

n


sup

f ∈F

1
n
∑

i

(
f (Z ′

i )− f (Zi)
)



= EnE′
n


sup

f ∈F

1
n
∑

i
εi
(
f (U ′

i )− f (Ui)
)

 .

Here’s the big trick: since (Z1, . . . ,Zn,Z ′
1, . . . ,Z ′

n) and
(U1, . . . ,Un,U ′

1, . . . ,U ′
n) have same distribution, and ε arbitrary,

then (with Pr[εi = +1] = 1/2 iid “Rademacher”)

EεEnE′
n

(
sup
f ∈F

Ê′
nf − Ênf

)
= EεEnE′

n


sup

f ∈F

1
n
∑

i
εi
(
f (U ′

i )− f (Ui)
)



= EεEnE′
n


sup

f ∈F

1
n
∑

i
εi
(
f (Z ′

i )− f (Zi)
)

 .

Since similarly replacing εi and −εi doesn’t change Eε,

EεEnE′
n

(
sup
f ∈F

Ê′
nf − Ênf

)

= EεEnE′
n


sup

f ∈F

1
n
∑

i
εi
(
f (Z ′

i )− f (Zi)
)



≤ EεEnE′
n


 sup

f ,f ′∈F

1
n
∑

i
εi
(
f (Z ′

i )− f ′(Zi)
)



= EεE′
n


 sup

f ′∈F

1
n
∑

i
εi
(
f (Z ′

i )
)

+ EεE′

n


sup

f ∈F

1
n
∑

i
εi
(
−f ′(Zi)

)



= 2En
1
nEε sup

f ∈F

∑

i
εi
(
f (Zi)

)
= 2En

1
nURad(F|S) = 2EnRad(F|S),

where URad(F|S) and Rad(F|S) respectively denote the
unnormalized Rademacher complexity and (normalized)
Rademacher complexity.



Specifically, define unnormalized Rademacher complexity URad(V )
as

URad(V ) := E sup
u∈V
〈ε, u〉 , Rad(V ) := 1

nURad(V ).

Typically, we’ll have a sample S = (Z1, . . . ,Zn), and invoke this
with vectors

F|S :=
{
(f (Z1), . . . , f (Zn)) : f ∈ F} .

Summarizing our derivations:

Lemma 2. EnE′
n supf ∈F

(
Ê′

nf − Ênf
)
≤ 2

nEnURad(F|S).

Remarks.
I Can flip Ê′

n and Ên using −F := {−f : f ∈ F}.
I Rademacher complexity arose as its own concept in early 2000s

(the work of Bartlett, Mendelson, Koltchinskii, . . . ); the
expressions and derivations go back decades. “Stop the proof
in the middle and draw a box” – Bartlett.

I Can view this as fitting F|S to random signs, but usually we
work with F = ` ◦ G.

I Note that URad({u}) = 0, URad(V + {c}) = Rad(V ); fails for
original definition Eε supu∈V

∣∣〈ε, u〉 /n
∣∣.

I Rademacher complexity is not perfect: e.g., hard to prove 1/n
rates, and I don’t know how to use it to prove best deep net
generalization. But it and its lemmas are still very convenient!

I Other texts all use Rad; I like URad.
I Both lemmas in the section are called symmetrization.

3. Generalization with concentration.
We controlled expected uniform deviations: En supf ∈F Ef − Ênf .

High probability bounds will follow via concentration inequalities.

Theorem (McDiarmid). Suppose F : Rn → R satisfies “bounded
differences”: ∀i ∈ {1, . . . , n} ∃ci ,

sup
z1,...,zn,z ′

i

∣∣∣F (z1, . . . , zi , . . . , zn)− F (z1, . . . , z ′
i , . . . , zn)

∣∣∣ ≤ ci .

With pr ≥ 1− δ,

EnF (Z1, . . . ,Zn) ≤ F (Z1, . . . ,Zn) +

√∑
i c2

i
2 ln(1/δ).

Remarks.
I Proof: analyze MGF, apply Chernoff technique. (Proof with

worst constants: corollary of Azuma.)
I Hoeffding follows by setting F (~Z ) = ∑

i Zi/n and verifying
bounded differences ci := (bi − ai)/n.

Theorem. Let F be given with f (z) ∈ [a, b] a.s..

1. With probability ≥ 1− δ,

sup
f ∈F

Ef − Ênf ≤ En

(
sup
f ∈F

Ef − Ênf
)

+ (b − a)
√

ln(1/δ)
2n .

2. With probability ≥ 1− δ,

EnURad(F|S) ≤ URad(F|S) + (b − a)
√

n ln(1/δ)
2 .

3. With probability ≥ 1− δ,

sup
f ∈F

Ef − Ênf ≤
2
nURad(F|S) + 3(b − a)

√
ln(2/δ)
2n .

Proof (sketch). McDiarmid and our symmetrization lemmas.


