Lecture 19. (Sketch.)

- No class this Wednesday, November 7!
- I'll be in my office today $5-8 \mathrm{pm}$ if anyone wants to discuss course project.
- Please sign up for project proposal meetings - you don't get full credit without it.
- Homework 2 should go out later today.

The standard fix in learning theory is a uniform deviation bound over a class of functions \mathcal{F} : e.g., a bound of the form

$$
\operatorname{Pr}\left[\sup _{f \in \mathcal{F}} \mathcal{R}_{\ell}(f)-\widehat{\mathcal{R}}_{\ell}(f)>\epsilon\right] \leq \text { some function of } \mathcal{F}, \ell, \epsilon, n .
$$

So far, we have a bound based on $|\mathcal{F}|$:

- Let \mathcal{F}, ℓ, and a probability distribution be given so that $\ell(f(x), y) \in[a, b]$ almost surely. With probability at least $1-\delta$, for every $f \in \mathcal{F}$,

$$
\mathcal{R}_{\ell}(f) \leq \widehat{\mathcal{R}}_{\ell}(f)+(b-a) \sqrt{\frac{\ln |\mathcal{F}|+\ln (1 / \delta)}{2 n}}
$$

- If $|\mathcal{F}|=\infty$, we can still use this via discretization. The most naive discretization ("primitive cover" from last class) requires a finite subset G so that $\forall f \in \mathcal{F}, \exists g \in G$,
$\sup _{x}|g(x)-f(x)| \leq \epsilon$. If \mathcal{F} denotes linear classifiers, and $\epsilon<2$, then $|G|=\infty$ is necessary!

1. Recap from past two lectures.

Hoeffding lets us control a single random variable: with probability at least $1-\delta$ over an iid draw of $\left(Z_{1}, \ldots, Z_{n}\right)$ with $Z_{i} \in[a, b]$ a.s.,

$$
\mathbb{E} Z \leq \frac{1}{n} \sum_{i} Z_{i}+(b-a) \sqrt{\frac{\ln (1 / \delta)}{2 n}}
$$

- From here, we can bound a single function's risk by defining $Z_{i}:=\ell\left(\hat{f}\left(x_{i}\right), y_{i}\right)$.
- If \hat{f} depends on $\left(\left(x_{i}, y_{i}\right)\right)_{i=1}^{n}$ (e.g., it is the output of a training algorithm), then $\left(Z_{1}, \ldots, Z_{n}\right)$ as defined above are no longer necessarily iid!

2. Generalization without concentration: symmetrization.

The standard approach has two key steps. Some notation:

$$
\begin{aligned}
Z & \text { r.v.; e.g., }(x, y), \\
\mathcal{F} & \text { functions; e.g., } f(Z)=\ell(g(X), Y), \\
\mathbb{E} & \text { expectation over } Z, \\
\mathbb{E}_{n} & \text { expectation over }\left(Z_{1}, \ldots, Z_{n}\right), \\
\mathbb{E} f & =\mathbb{E} f(Z), \\
\hat{\mathbb{E}}_{n} f & =\frac{1}{n} \sum_{i} f\left(Z_{i}\right) .
\end{aligned}
$$

In this notation, $\mathcal{R}_{\ell}(g)=\mathbb{E} \ell \circ g$ and $\widehat{\mathcal{R}}_{\ell}(g)=\hat{\mathbb{E}} \ell \circ g$.

First key step: introduce another sample ("ghost sample"). Let $\left(Z_{1}^{\prime}, \ldots, Z_{n}^{\prime}\right)$ be another iid draw from Z; define \mathbb{E}_{n}^{\prime} and $\hat{\mathbb{E}}_{n}^{\prime}$ analogously.
Lemma 1. $\mathbb{E}_{n}\left(\sup _{f \in \mathcal{F}} \mathbb{E} f-\hat{\mathbb{E}}_{n} f\right) \leq \mathbb{E}_{n} \mathbb{E}_{n}^{\prime}\left(\sup _{f \in \mathcal{F}} \hat{\mathbb{E}}_{n}^{\prime} f-\hat{\mathbb{E}}_{n} f\right)$.
Proof. Fix any $\epsilon>0$ and apx max $f_{\epsilon} \in \mathcal{F}$; then

$$
\begin{aligned}
\mathbb{E}_{n}\left(\sup _{f \in \mathcal{F}} \mathbb{E} f-\hat{\mathbb{E}}_{n} f\right) & \leq \mathbb{E}_{n}\left(\mathbb{E} f_{\epsilon}-\hat{\mathbb{E}}_{n} f_{\epsilon}\right)+\epsilon \\
& =\mathbb{E}_{n}\left(\mathbb{E}_{n}^{\prime} \hat{\mathbb{E}}_{n}^{\prime} f_{\epsilon}-\hat{\mathbb{E}}_{n} f_{\epsilon}\right)+\epsilon \\
& =\mathbb{E}_{n}^{\prime} \mathbb{E}_{n}\left(\hat{\mathbb{E}}_{n}^{\prime} f_{\epsilon}-\hat{\mathbb{E}}_{n} f_{\epsilon}\right)+\epsilon \\
& \leq \mathbb{E}_{n}^{\prime} \mathbb{E}_{n}\left(\sup _{f \in \mathcal{F}} \hat{\mathbb{E}}_{n}^{\prime} f-\hat{\mathbb{E}}_{n} f\right)+\epsilon
\end{aligned}
$$

Result follows since $\epsilon>0$ arbitrary.

Remarks.

- Notice we are working only in expectation for now. In the subsequent section, we'll get high probability bounds. But $\sup _{f \in \mathcal{F}} \mathbb{E} f-\mathbb{E}_{n}^{\prime} f$ is a random variable; can describe it in many other ways too! (E.g., "asymptotic normality".)
- This lemma says we can instead work with two samples. Working with two samples could have been our starting point: by itself it is a meaningful and interpretable quantity!

Key step 2: swap points between the two samples; a magic trick with random signs boils this down into a manageable quantity.

Fix a vector $\epsilon \in\{-1,+1\}^{n}$ and define a r.v. $\left(U_{i}, U_{i}^{\prime}\right):=\left(Z_{i}, Z_{i}^{\prime}\right)$ if $\epsilon=1$ and $\left(U_{i}, U_{i}^{\prime}\right)=\left(Z_{i}^{\prime}, Z_{i}\right)$ if $\epsilon=-1$. Then

$$
\begin{aligned}
\mathbb{E}_{n} \mathbb{E}_{n}^{\prime}\left(\sup _{f \in \mathcal{F}} \hat{\mathbb{E}}_{n}^{\prime} f-\hat{\mathbb{E}}_{n} f\right) & =\mathbb{E}_{n} \mathbb{E}_{n}^{\prime}\left(\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i}\left(f\left(Z_{i}^{\prime}\right)-f\left(Z_{i}\right)\right)\right) \\
& =\mathbb{E}_{n} \mathbb{E}_{n}^{\prime}\left(\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i}\left(f\left(U_{i}^{\prime}\right)-f\left(U_{i}\right)\right)\right) .
\end{aligned}
$$

Here's the big trick: since $\left(Z_{1}, \ldots, Z_{n}, Z_{1}^{\prime}, \ldots, Z_{n}^{\prime}\right)$ and $\left(U_{1}, \ldots, U_{n}, U_{1}^{\prime}, \ldots, U_{n}^{\prime}\right)$ have same distribution, and ϵ arbitrary, then (with $\operatorname{Pr}\left[\epsilon_{i}=+1\right]=1 / 2$ iid "Rademacher")
$\mathbb{E}_{\epsilon} \mathbb{E}_{n} \mathbb{E}_{n}^{\prime}\left(\sup _{f \in \mathcal{F}} \hat{\mathbb{E}}_{n}^{\prime} f-\hat{\mathbb{E}}_{n} f\right)=\mathbb{E}_{\epsilon} \mathbb{E}_{n} \mathbb{E}_{n}^{\prime}\left(\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i}\left(f\left(U_{i}^{\prime}\right)-f\left(U_{i}\right)\right)\right)$

$$
=\mathbb{E}_{\epsilon} \mathbb{E}_{n} \mathbb{E}_{n}^{\prime}\left(\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i}\left(f\left(Z_{i}^{\prime}\right)-f\left(Z_{i}\right)\right)\right) .
$$

Since similarly replacing ϵ_{i} and $-\epsilon_{i}$ doesn't change \mathbb{E}_{ϵ},
$\mathbb{E}_{\epsilon} \mathbb{E}_{n} \mathbb{E}_{n}^{\prime}\left(\sup _{f \in \mathcal{F}} \hat{\mathbb{E}}_{n}^{\prime} f-\hat{\mathbb{E}}_{n} f\right)$
$=\mathbb{E}_{\epsilon} \mathbb{E}_{n} \mathbb{E}_{n}^{\prime}\left(\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i}\left(f\left(Z_{i}^{\prime}\right)-f\left(Z_{i}\right)\right)\right)$
$\leq \mathbb{E}_{\epsilon} \mathbb{E}_{n} \mathbb{E}_{n}^{\prime}\left(\sup _{f, f^{\prime} \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i}\left(f\left(Z_{i}^{\prime}\right)-f^{\prime}\left(Z_{i}\right)\right)\right)$
$=\mathbb{E}_{\epsilon} \mathbb{E}_{n}^{\prime}\left(\sup _{f^{\prime} \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i}\left(f\left(Z_{i}^{\prime}\right)\right)\right)+\mathbb{E}_{\epsilon} \mathbb{E}_{n}^{\prime}\left(\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i}\left(-f^{\prime}\left(Z_{i}\right)\right)\right)$
$=2 \mathbb{E}_{n} \frac{1}{n} \mathbb{E}_{\epsilon} \sup _{f \in \mathcal{F}} \sum_{i} \epsilon_{i}\left(f\left(Z_{i}\right)\right)=2 \mathbb{E}_{n} \frac{1}{n} \operatorname{URad}\left(\mathcal{F}_{\mid S}\right)=2 \mathbb{E}_{n} \operatorname{Rad}\left(\mathcal{F}_{\mid S}\right)$,
where $\operatorname{URad}\left(\mathcal{F}_{\mid S}\right)$ and $\operatorname{Rad}\left(\mathcal{F}_{\mid S}\right)$ respectively denote the unnormalized Rademacher complexity and (normalized) Rademacher complexity.

Specifically, define unnormalized Rademacher complexity URad(V) as

$$
\operatorname{URad}(V):=\mathbb{E} \sup _{u \in V}\langle\epsilon, u\rangle, \quad \operatorname{Rad}(V):=\frac{1}{n} U \operatorname{Rad}(V) .
$$

Typically, we'll have a sample $S=\left(Z_{1}, \ldots, Z_{n}\right)$, and invoke this with vectors

$$
\mathcal{F}_{\mid S}:=\left\{\left(f\left(Z_{1}\right), \ldots, f\left(Z_{n}\right)\right): f \in \mathcal{F}\right\} .
$$

Summarizing our derivations:
Lemma 2. $\mathbb{E}_{n} \mathbb{E}_{n}^{\prime} \sup _{f \in \mathcal{F}}\left(\hat{\mathbb{E}}_{n}^{\prime} f-\hat{\mathbb{E}}_{n} f\right) \leq \frac{2}{n} \mathbb{E}_{n} \cup \operatorname{Rad}\left(\mathcal{F}_{\mid S}\right)$.

Remarks.

- Can flip $\hat{\mathbb{E}}_{n}^{\prime}$ and $\hat{\mathbb{E}}_{n}$ using $-\mathcal{F}:=\{-f: f \in \mathcal{F}\}$.
- Rademacher complexity arose as its own concept in early 2000s (the work of Bartlett, Mendelson, Koltchinskii, ...); the expressions and derivations go back decades. "Stop the proof in the middle and draw a box" - Bartlett.
- Can view this as fitting $\mathcal{F}_{\mid S}$ to random signs, but usually we work with $\mathcal{F}=\ell \circ \mathcal{G}$.
- Note that $\operatorname{URad}(\{u\})=0, \operatorname{URad}(V+\{c\})=\operatorname{Rad}(V)$; fails for original definition $\mathbb{E}_{\epsilon} \sup _{u \in V}|\langle\epsilon, u\rangle / n|$.
- Rademacher complexity is not perfect: e.g., hard to prove $1 / n$ rates, and I don't know how to use it to prove best deep net generalization. But it and its lemmas are still very convenient!

- Other texts all use Rad; I like URad.

- Both lemmas in the section are called symmetrization.

3. Generalization with concentration.

We controlled expected uniform deviations: $\mathbb{E}_{n} \sup _{f \in \mathcal{F}} \mathbb{E} f-\hat{\mathbb{E}}_{n} f$. High probability bounds will follow via concentration inequalities.

Theorem (McDiarmid). Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies "bounded differences": $\forall i \in\{1, \ldots, n\} \exists c_{i}$,

$$
\sup _{z_{1}, \ldots, z_{n}, z_{i}^{\prime}}\left|F\left(z_{1}, \ldots, z_{i}, \ldots, z_{n}\right)-F\left(z_{1}, \ldots, z_{i}^{\prime}, \ldots, z_{n}\right)\right| \leq c_{i} .
$$

With $\mathrm{pr} \geq 1-\delta$,

$$
\mathbb{E}_{n} F\left(Z_{1}, \ldots, Z_{n}\right) \leq F\left(Z_{1}, \ldots, Z_{n}\right)+\sqrt{\frac{\sum_{i} c_{i}^{2}}{2} \ln (1 / \delta)}
$$

Remarks.

- Proof: analyze MGF, apply Chernoff technique. (Proof with worst constants: corollary of Azuma.)
- Hoeffding follows by setting $F(\vec{Z})=\sum_{i} Z_{i} / n$ and verifying bounded differences $c_{i}:=\left(b_{i}-a_{i}\right) / n$.

Theorem. Let \mathcal{F} be given with $f(z) \in[a, b]$ a.s..

1. With probability $\geq 1-\delta$,

$$
\sup _{f \in \mathcal{F}} \mathbb{E} f-\hat{\mathbb{E}}_{n} f \leq \mathbb{E}_{n}\left(\sup _{f \in \mathcal{F}} \mathbb{E} f-\hat{\mathbb{E}}_{n} f\right)+(b-a) \sqrt{\frac{\ln (1 / \delta)}{2 n}}
$$

2. With probability $\geq 1-\delta$,

$$
\mathbb{E}_{n} \cup \operatorname{Rad}\left(\mathcal{F}_{\mid S}\right) \leq \operatorname{URad}\left(\mathcal{F}_{\mid S}\right)+(b-a) \sqrt{\frac{n \ln (1 / \delta)}{2}}
$$

3. With probability $\geq 1-\delta$,

$$
\sup _{f \in \mathcal{F}} \mathbb{E} f-\hat{\mathbb{E}}_{n} f \leq \frac{2}{n} \operatorname{URad}\left(\mathcal{F}_{\mid S}\right)+3(b-a) \sqrt{\frac{\ln (2 / \delta)}{2 n}}
$$

Proof (sketch). McDiarmid and our symmetrization lemmas.

