Lecture 19. (Sketch.)

» No class this Wednesday, November 7!

» I'll be in my office today 5-8pm if anyone wants to discuss
course project.

» Please sign up for project proposal meetings — you don't get
full credit without it.

» Homework 2 should go out later today.

1. Recap from past two lectures.

Hoeffding lets us control a single random variable: with probability
at least 1 — § over an iid draw of (Z1,...,Z,) with Z; € [a, b] a.s.,

In(1/96)
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EZ < — Zi b—
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» From here, we can bound a single function’s risk by defining

Zi = U(F (), 7).

> If 7 depends on ((x;,y;))"_; (e.g., it is the output of a training
algorithm), then (Zi,...,Z,) as defined above are no longer
necessarily iid!

The standard fix in learning theory is a uniform deviation bound
over a class of functions F: e.g., a bound of the form

~

Pr{sup Re(f) — Re(f) > €
feF

< some function of F, ¢, €, n.

So far, we have a bound based on |F]:

» Let F, ¢, and a probability distribution be given so that
0(f(x),y) € [a, b] almost surely. With probability at least
1—9, for every f € F,

Ru(F) < RolF) + (b — a)\/'” Gl ;”(1/5).

» If | F| = oo, we can still use this via discretization. The most
naive discretization (“primitive cover” from last class) requires
a finite subset G so that Vf € F, dg € G,
sup, |g(x) — f(x)| < e. If F denotes linear classifiers, and
€ < 2, then |G| = oo is necessary!

» |s there some way to work with onlvy the behavior on the

2. Generalization without concentration: symmetrization.

The standard approach has two key steps. Some notation:
Z rv,;eg., (x,y),
F  functions; e.g., f(Z) = ¢(g(X),Y),
[E expectation over Z,

E, expectation over (Z1,...,2Z,),
Ef = Ef(Z),

A 1
Enf =~ > f(Z).

In this notation, Ry(g) = Elo g and Ry(g) = Kl o g.




First key step: introduce another sample (“ghost sample”). Let
(Z1,...,2]) be another iid draw from Z; define E/ and E/,

analogously.
Lemma 1. E, (supr;Ef — IAE,,f) < E,E|, <supf€fIAE’nf - ]E,,f) .
Proof. Fix any ¢ > 0 and apx max f. € F, then

E, (sup Ef — I@,,f) <E, <Ef; — Enﬁs) +e
feF

= E, (B f — Bof) + ¢
= BB, (B)f —Bof) + e

<E.E, (sup R — ]E,,f) +e€
feF

Result follows since € > 0 arbitrary.

Remarks.

» Notice we are working only in expectation for now. In the
subsequent section, we'll get high probability bounds. But
supser Ef — E/f is a random variable; can describe it in many
other ways too! (E.g., “asymptotic normality".)

» This lemma says we can instead work with two samples.
Working with two samples could have been our starting point:
by itself it is a meaningful and interpretable quantity!

Key step 2: swap points between the two samples; a magic trick
with random signs boils this down into a manageable quantity.

Fix a vector € € {—1,+1}" and define a r.v. (U, U!) :=(Z;, Z}) if
e=1and (U, U)) =(Z/,Z) if e=—1. Then

E.E R f—R,f f(Z)—f(Z
(s ) -, (igg MY >))

feF

=E,E/ (?LGJE_ Ze,( F(UD — £( U)))

Here's the big trick: since (Z1,...,2Z,, Z1,...,2Z}) and
(Ur,..., U, Ui, ..., U]) have same distribution, and € arbitrary,
then (with Pr[e; = +1] = 1/2 iid “Rademacher”)

feF fer n

o 1
E.E,E, <sup & f - ]E,J) = E.E,E, (sup =S e (F(Up) - f(U,-)))
i
= E.E,E (sup ! > (F(Z)) - f(Z-)>\, .
np n < i i i

fcF

Since similarly replacing ¢; and —¢; doesn’t change E.,

EE.E. ( sup! f —&,f
feF

— EE,E, (sup Ze,( F(Z!) — f( Z)))

fer n

=S (F(Zh) - f’<z,->))

<EREE | sup =
f.fer n

fleF n

=EE, (SUp 1 Ze,- (f(Z,’))) +EE, (?22117 Ze; (f’(Z;)))

1
= 2B, supZe, (Z)) = 2E, URad(]—"|5) = 2E,Rad(Fs),
feF

where URad(F|s) and Rad(F|s) respectively denote the
unnormalized Rademacher complexity and (normalized)
Rademacher complexity.




Specifically, define unnormalized Rademacher complexity URad(V)
as

URad(V) := E sup (¢, u),

uevVv

Rad(V) := IquRad(V).

Typically, we'll have a sample S = (Z3, ..
with vectors

., Zy), and invoke this

]:|5 = {(f(zl)vaf(zn))fEJ:}

Summarizing our derivations:

Lemma 2. E,E} supscr (I@l’nf — IAEnf) < 2E,URad(Fjs).

Remarks.
> Can flip &/ and &, using —F := {—f : f € F}.

» Rademacher complexity arose as its own concept in early 2000s
(the work of Bartlett, Mendelson, Koltchinskii, ... ); the
expressions and derivations go back decades. “Stop the proof
in the middle and draw a box" — Bartlett.

» Can view this as fitting F|s to random signs, but usually we
work with F =/o04.

» Note that URad({v}) = 0, URad(V + {c}) = Rad(V); fails for
original definition E. sup,cy | (€, u) /n|.

» Rademacher complexity is not perfect: e.g., hard to prove 1/n
rates, and | don't know how to use it to prove best deep net
generalization. But it and its lemmas are still very convenient!

» Other texts all use Rad; | like URad.

» Both lemmas in the section are called symmetrization.

3.

Generalization with concentration.
We controlled expected uniform deviations: E,supsc r Ef — &, f.
High probability bounds will follow via concentration inequalities.

Theorem (McDiarmid). Suppose F : R” — R satisfies “bounded
differences”: Vi € {1,...,n} 3c,

sup )F(21,~~~7Zi,...,zn) —F(z1,...,2Z,...,zn)| < ¢
Z1,000s2Zn,2]
With pr > 1 —9,
D Ci2
E,,F(Zl,. . .,Zn) < F(Zl,...,Zn) + =5 |n(1/5)_
Remarks.

» Proof: analyze MGF, apply Chernoff technique. (Proof with
worst constants: corollary of Azuma.)

=

» Hoeffding follows by setting F(Z) = _; Zi/n and verifying
bounded differences ¢; := (b; — a;)/n.

Theorem. Let F be given with f(z) € [a, b] a.s..
1. With probability > 1 — ¢,

f A In(1
supEf —E,f <E, (supEf—Enf>+(b_a) n( /5)
fer fer 2n

2. With probability > 1 — 4,
nin(1/9)

E,URad(F|s) < URad(Fjs) + (b — a)| ="

3. With probability > 1 — 9,

A 2 In(2/6
sup Ef — E,f < —URad(Fjs) +3(b — a) n(2/ )
feF n 2n

Proof (sketch). McDiarmid and our symmetrization lemmas.




