Lecture 19. (Sketch.)

- No class this Wednesday, November 7!
- I'll be in my office today 5-8pm if anyone wants to discuss course project.
- Please sign up for project proposal meetings you don't get full credit without it.
- Homework 2 should go out later today.

1. Recap from past two lectures.

Hoeffding lets us control a single random variable: with probability at least $1 - \delta$ over an iid draw of (Z_1, \ldots, Z_n) with $Z_i \in [a, b]$ a.s.,

$$\mathbb{E}Z \leq \frac{1}{n}\sum_{i}Z_{i} + (b-a)\sqrt{\frac{\ln(1/\delta)}{2n}}$$

- From here, we can bound a single function's risk by defining Z_i := ℓ(f̂(x_i), y_i).
- ► If f depends on ((x_i, y_i))ⁿ_{i=1} (e.g., it is the output of a training algorithm), then (Z₁,..., Z_n) as defined above are no longer necessarily iid!

The standard fix in learning theory is a **uniform deviation bound** over a class of functions \mathcal{F} : e.g., a bound of the form

$$\Pr\left[\sup_{f\in\mathcal{F}}\mathcal{R}_{\ell}(f)-\widehat{\mathcal{R}}_{\ell}(f)>\epsilon\right]\leq\text{ some function of }\mathcal{F},\ \ell,\ \epsilon,\ n.$$

So far, we have a bound based on $|\mathcal{F}|{:}$

• Let \mathcal{F} , ℓ , and a probability distribution be given so that $\ell(f(x), y) \in [a, b]$ almost surely. With probability at least $1 - \delta$, for every $f \in \mathcal{F}$,

$$\mathcal{R}_\ell(f) \leq \widehat{\mathcal{R}}_\ell(f) + (b-a) \sqrt{rac{\ln|\mathcal{F}| + \ln(1/\delta)}{2n}}.$$

- If |F| = ∞, we can still use this via discretization. The most naive discretization ("primitive cover" from last class) requires a finite subset G so that ∀f ∈ F, ∃g ∈ G, sup_x |g(x) f(x)| ≤ ε. If F denotes linear *classifiers*, and ε < 2, then |G| = ∞ is necessary!
 - Is there some way to work with only the behavior on the

2. Generalization without concentration: symmetrization.

The standard approach has two key steps. Some notation:

Z r.v.; e.g.,
$$(x, y)$$
,

$$\mathcal{F}$$
 functions; e.g., $f(Z) = \ell(g(X), Y)$,

 \mathbb{E} expectation over Z,

$$\mathbb{E}_n \quad \text{expectation over } (Z_1, \dots, Z_n),$$
$$\mathbb{E}f = \mathbb{E}f(Z),$$
$$\hat{\mathbb{E}}_n f = \frac{1}{n} \sum_i f(Z_i).$$

In this notation, $\mathcal{R}_\ell(g) = \mathbb{E}\ell \circ g$ and $\widehat{\mathcal{R}}_\ell(g) = \hat{\mathbb{E}}\ell \circ g.$

First key step: introduce another sample ("ghost sample"). Let (Z'_1, \ldots, Z'_n) be another iid draw from Z; define \mathbb{E}'_n and $\hat{\mathbb{E}}'_n$ analogously.

Lemma 1.
$$\mathbb{E}_n\left(\sup_{f\in\mathcal{F}}\mathbb{E}f-\hat{\mathbb{E}}_nf\right)\leq \mathbb{E}_n\mathbb{E}'_n\left(\sup_{f\in\mathcal{F}}\hat{\mathbb{E}}'_nf-\hat{\mathbb{E}}_nf\right).$$

Proof. Fix any $\epsilon > 0$ and apx max $f_{\epsilon} \in \mathcal{F}$; then

$$\mathbb{E}_{n}\left(\sup_{f\in\mathcal{F}}\mathbb{E}f-\hat{\mathbb{E}}_{n}f\right) \leq \mathbb{E}_{n}\left(\mathbb{E}f_{\epsilon}-\hat{\mathbb{E}}_{n}f_{\epsilon}\right)+\epsilon$$
$$=\mathbb{E}_{n}\left(\mathbb{E}_{n}'\hat{\mathbb{E}}_{n}'f_{\epsilon}-\hat{\mathbb{E}}_{n}f_{\epsilon}\right)+\epsilon$$
$$=\mathbb{E}_{n}'\mathbb{E}_{n}\left(\hat{\mathbb{E}}_{n}'f_{\epsilon}-\hat{\mathbb{E}}_{n}f_{\epsilon}\right)+\epsilon$$
$$\leq \mathbb{E}_{n}'\mathbb{E}_{n}\left(\sup_{f\in\mathcal{F}}\hat{\mathbb{E}}_{n}'f-\hat{\mathbb{E}}_{n}f\right)+\epsilon$$

Result follows since $\epsilon > 0$ arbitrary.

Key step 2: swap points between the two samples; a magic trick with random signs boils this down into a manageable quantity.

Fix a vector $\epsilon \in \{-1, +1\}^n$ and define a r.v. $(U_i, U'_i) := (Z_i, Z'_i)$ if $\epsilon = 1$ and $(U_i, U'_i) = (Z'_i, Z_i)$ if $\epsilon = -1$. Then

$$\mathbb{E}_{n}\mathbb{E}_{n}'\left(\sup_{f\in\mathcal{F}}\hat{\mathbb{E}}_{n}'f-\hat{\mathbb{E}}_{n}f\right)=\mathbb{E}_{n}\mathbb{E}_{n}'\left(\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i}\left(f(Z_{i}')-f(Z_{i})\right)\right)$$
$$=\mathbb{E}_{n}\mathbb{E}_{n}'\left(\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i}\epsilon_{i}\left(f(U_{i}')-f(U_{i})\right)\right)$$

Here's the big trick: since $(Z_1, \ldots, Z_n, Z'_1, \ldots, Z'_n)$ and $(U_1, \ldots, U_n, U'_1, \ldots, U'_n)$ have same distribution, and ϵ arbitrary, then (with $\Pr[\epsilon_i = +1] = 1/2$ iid "Rademacher")

$$\mathbb{E}_{\epsilon}\mathbb{E}_{n}\mathbb{E}'_{n}\left(\sup_{f\in\mathcal{F}}\hat{\mathbb{E}}'_{n}f-\hat{\mathbb{E}}_{n}f\right)=\mathbb{E}_{\epsilon}\mathbb{E}_{n}\mathbb{E}'_{n}\left(\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i}\epsilon_{i}\left(f(U'_{i})-f(U_{i})\right)\right)$$
$$=\mathbb{E}_{\epsilon}\mathbb{E}_{n}\mathbb{E}'_{n}\left(\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i}\epsilon_{i}\left(f(Z'_{i})-f(Z_{i})\right)\right).$$

Remarks.

- Notice we are working only *in expectation* for now. In the subsequent section, we'll get high probability bounds. But sup_{f∈F} Ef − E'_nf is a random variable; can describe it in many other ways too! (E.g., "asymptotic normality".)
- This lemma says we can instead work with two samples. Working with two samples could have been our starting point: by itself it is a meaningful and interpretable quantity!

Since similarly replacing ϵ_i and $-\epsilon_i$ doesn't change \mathbb{E}_{ϵ_i}

$$\begin{split} & \mathbb{E}_{\epsilon} \mathbb{E}_{n} \mathbb{E}'_{n} \left(\sup_{f \in \mathcal{F}} \hat{\mathbb{E}}'_{n} f - \hat{\mathbb{E}}_{n} f \right) \\ &= \mathbb{E}_{\epsilon} \mathbb{E}_{n} \mathbb{E}'_{n} \left(\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i} \left(f(Z'_{i}) - f(Z_{i}) \right) \right) \\ &\leq \mathbb{E}_{\epsilon} \mathbb{E}_{n} \mathbb{E}'_{n} \left(\sup_{f, f' \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i} \left(f(Z'_{i}) - f'(Z_{i}) \right) \right) \\ &= \mathbb{E}_{\epsilon} \mathbb{E}'_{n} \left(\sup_{f' \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i} \left(f(Z'_{i}) \right) \right) + \mathbb{E}_{\epsilon} \mathbb{E}'_{n} \left(\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i} \left(-f'(Z_{i}) \right) \right) \\ &= 2\mathbb{E}_{n} \frac{1}{n} \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \sum_{i} \epsilon_{i} \left(f(Z_{i}) \right) = 2\mathbb{E}_{n} \frac{1}{n} \mathbb{U} \mathbb{R} \mathrm{ad}(\mathcal{F}_{|S}) = 2\mathbb{E}_{n} \mathbb{R} \mathrm{ad}(\mathcal{F}_{|S}), \end{split}$$

where $\text{URad}(\mathcal{F}_{|S})$ and $\text{Rad}(\mathcal{F}_{|S})$ respectively denote the **unnormalized Rademacher complexity** and (normalized) **Rademacher complexity**.

Specifically, define unnormalized Rademacher complexity URad(V) as

$$\mathsf{URad}(V) := \mathbb{E} \sup_{u \in V} \langle \epsilon, u \rangle, \qquad \mathsf{Rad}(V) := \frac{1}{n} \mathsf{URad}(V).$$

Typically, we'll have a sample $S = (Z_1, \ldots, Z_n)$, and invoke this with vectors

$$\mathcal{F}_{|S} := \left\{ (f(Z_1), \ldots, f(Z_n)) : f \in \mathcal{F} \right\}.$$

Summarizing our derivations:

Lemma 2. $\mathbb{E}_n \mathbb{E}'_n \sup_{f \in \mathcal{F}} \left(\hat{\mathbb{E}}'_n f - \hat{\mathbb{E}}_n f \right) \leq \frac{2}{n} \mathbb{E}_n \mathsf{URad}(\mathcal{F}_{|S}).$

3. Generalization with concentration.

We controlled *expected* uniform deviations: $\mathbb{E}_n \sup_{f \in \mathcal{F}} \mathbb{E}f - \hat{\mathbb{E}}_n f$.

High probability bounds will follow via concentration inequalities.

Theorem (McDiarmid). Suppose $F : \mathbb{R}^n \to \mathbb{R}$ satisfies "bounded differences": $\forall i \in \{1, ..., n\} \exists c_i$,

$$\sup_{z_1,\ldots,z_n,z'_i} \left| F(z_1,\ldots,z_i,\ldots,z_n) - F(z_1,\ldots,z'_i,\ldots,z_n) \right| \leq c_i.$$

With pr $\geq 1-\delta$,

$$\mathbb{E}_n F(Z_1,\ldots,Z_n) \leq F(Z_1,\ldots,Z_n) + \sqrt{\frac{\sum_i c_i^2}{2} \ln(1/\delta)}.$$

Remarks.

- Proof: analyze MGF, apply Chernoff technique. (Proof with worst constants: corollary of Azuma.)
- ▶ Hoeffding follows by setting $F(\vec{Z}) = \sum_i Z_i/n$ and verifying bounded differences $c_i := (b_i a_i)/n$.

Remarks.

- Can flip $\hat{\mathbb{E}}'_n$ and $\hat{\mathbb{E}}_n$ using $-\mathcal{F} := \{-f : f \in \mathcal{F}\}.$
- Rademacher complexity arose as its own concept in early 2000s (the work of Bartlett, Mendelson, Koltchinskii, ...); the expressions and derivations go back decades. "Stop the proof in the middle and draw a box" – Bartlett.
- ▶ Can view this as fitting $\mathcal{F}_{|S}$ to random signs, but usually we work with $\mathcal{F} = \ell \circ \mathcal{G}$.
- Note that URad({u}) = 0, URad(V + {c}) = Rad(V); fails for original definition E_ϵ sup_{u∈V} |⟨ϵ, u⟩ /n|.
- Rademacher complexity is **not perfect**: e.g., hard to prove 1/n rates, and I don't know how to use it to prove best deep net generalization. But it and its lemmas are still very convenient!
- Other texts all use Rad; I like URad.
- Both lemmas in the section are called **symmetrization**.

Theorem. Let \mathcal{F} be given with $f(z) \in [a, b]$ a.s..

1. With probability $\geq 1 - \delta$,

$$\sup_{f\in\mathcal{F}}\mathbb{E}f-\hat{\mathbb{E}}_n f\leq \mathbb{E}_n\left(\sup_{f\in\mathcal{F}}\mathbb{E}f-\hat{\mathbb{E}}_n f\right)+(b-a)\sqrt{\frac{\ln(1/\delta)}{2n}}$$

2. With probability $\geq 1 - \delta$,

$$\mathbb{E}_n \mathsf{URad}(\mathcal{F}_{|S}) \leq \mathsf{URad}(\mathcal{F}_{|S}) + (b-a)\sqrt{rac{n\ln(1/\delta)}{2}}.$$

3. With probability $\geq 1 - \delta$,

$$\sup_{f\in\mathcal{F}}\mathbb{E}f-\hat{\mathbb{E}}_nf\leq \frac{2}{n}\mathsf{URad}(\mathcal{F}_{|S})+3(b-a)\sqrt{\frac{\ln(2/\delta)}{2n}}.$$

Proof (sketch). McDiarmid and our symmetrization lemmas.