
Lecture 20. (Sketch.)
I Project proposal meetings this Wednesday, November 14! Must

attend to receive full points!

1. Rademacher recap.
Concentration controlled one function at a time. To control many
functions, out main tool is (unnormalized) Rademacher complexity:

URad(V ) := E sup
u∈V
〈ε, u〉 , Rad(V ) := 1

nURad(V ).

Given data S := (Z1, . . . ,Zn) and functions F , define vectors

F|S :=
{

(f (Z1), . . . , f (Zn)) : f ∈ F} .

Our main generalization tool involves URad(F|S), and is a
consequence of our two symmetrization lemmas and McDiarmid’s
inequality.

Theorem. Let F be given with f (z) ∈ [a, b] a.s.. With probability
≥ 1− δ,

sup
f ∈F

Ef − Ênf ≤ 2
nURad(F|S) + 3(b − a)

√
ln(2/δ)
2n .

Remarks.
I Recall that other treatments use Rad, we’ll use URad = Rad/n.
I Some classical texts provide a variety of Generalization bounds

which all require custom symmetrization arguments. Instead,
we’ll prove everything using Rademacher complexity (and the
preceding Theorem). This is a standard approach, but is not
perfect: some things seem to be hard or even (as far as we
know) impossible to prove with Rademacher complexity. (An
example of a thing that is hard are cases where the preceding
theorem should scale with 1/n rather than 1/√n.)

Remarks (continued).
I A quick note on interpretation: if V is more

expressive/complicated, then it can fit more of the random
signs, and URad(V ) is larger.

I Some sanity checks.

URad({u}) = Eε 〈ε, u〉 = 0,

URad({(−1, . . . ,−1), (+1, . . . ,+1)}) = Eε

∣∣∣∣∣∣
∑

i
εi

∣∣∣∣∣∣
= Θ(

√
n),

URad({−1,+1}n) = n.



2. Linear predictors.
Theorem. Collect sample S := (x1, . . . , xn) into rows of X ∈ Rn×d .

URad({x 7→ 〈w , x〉 : ‖w‖2 ≤ B}|S}) ≤ B‖X‖F .

Proof. Fix any ~ε ∈ {−1,+1}n. Then

sup
‖w‖≤B

∑

i
εi 〈w , xi〉 = sup

‖w‖≤B

〈
w ,
∑

i
εixi

〉
= B

∥∥∥∥∥∥
∑

i
εixi

∥∥∥∥∥∥
.

We’ll bound this norm with Jensen’s inequality (only inequality in
whole proof!):

E
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εixi
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= E

√√√√√
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i
εixi
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2

≤

√√√√√E
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∑

i
εixi

∥∥∥∥∥∥

2

.

To finish,

E

∥∥∥∥∥∥
∑

i
εixi

∥∥∥∥∥∥

2

= E


∑

i
‖εixi‖2 +

∑

i ,j

〈
εixi , εjxj

〉

 = E

∑

i
‖xi‖2 = ‖X‖2F .

Remark. We used exactly one inequality: everywhere else we had
an equality! Indeed, the bound is tight: we can get a lower bound
with Khintchine-Kahane (Eε‖

∑
i εixi‖2 ≥ C‖X‖F ).

3. Lipschitz composition.
Lemma. Let ` : Rn → Rn be a vector of univariate L-lipschitz
functions. Then URad(` ◦ V ) ≤ LURad(V ).

Proof. The idea of the proof is to “de-symmetrize” and get a
difference of coordinates to which we can apply the definition of L.

(See next page.)

Proof (continued).

URad(` ◦ V ) = E sup
u∈V

∑

i
εi`i (ui )

= 1
2Eε2:n sup

u,w∈V


`1(u1)− `1(w1) +

n∑

i=2
εi (`i (ui ) + `i (wi ))




≤ 1
2Eε2:n sup

u,w∈V


L|u1 − w1|+

n∑

i=2
εi (`i (ui ) + `i (wi ))




= 1
2Eε2:n sup

u,w∈V
u1≥w1


L(u1 − w1) +

n∑

i=2
εi (`i (ui ) + `i (wi ))




= Eε sup
u∈V


Lu1 +

n∑

i=2
εi`i (ui )


 .

Other coordinates follow by the same procedure.



We’ll overload composition notation:

(` ◦ f ) =
(
(x , y) 7→ `(−yf (x))

)
,

` ◦ F = {` ◦ f : f ∈ F}.

Corollary. Suppose ` is L-lipschitz and ` ◦ F ∈ [a, b] a.s.. With
probability ≥ 1− δ, every f ∈ F satisfies

R`(f ) ≤ R̂`(f ) + 2L
n URad(F|S) + 3(b − a)

√
ln(2/δ)
2n .

Proof. Use the lipschitz composition lemma with

|`(−yi f (xi )− `(−yi f ′(xi ))| ≤ L| − yi f (xi ) + yi f ′(xi ))|
≤ L|f (xi )− f ′(xi ))|.

Example (logistic regression).

Suppose ‖w‖ ≤ B and ‖xi‖ ≤ 1, and the loss is the 1-Lipschitz
logistic loss `log(z) := ln(1 + exp(z)). Note `(〈w , yx〉) ≥ 0 and
`(〈w , yx〉) ≤ ln(2) + 〈w , yx〉 ≤ ln(2) + B.

Combining the main Rademacher bound with the Lipschitz
composition lemma and the Rademacher bound on linear predictors,
with probability at least 1− δ, every w ∈ Rd with ‖w‖ ≤ B satisfies

R`(w) ≤ R̂`(w) + 2
nURad((` ◦ F)|S) + (ln(2) + B)

√
ln(2/δ)/(2n)

≤ R̂`(w) + 2B‖X‖F
n + (ln(2) + B)

√
ln(2/δ)/(2n)

≤ R̂`(w) + 2B + (B + ln(2))
√

ln(2/δ)/2√n .

Remarks.
I (Average case vs worst case.) Here we replaced ‖X‖F with the

looser √n.
I This bound scales as the SGD logistic regression bound proved

via Azuma, despite following a somewhat different route
(Azuma and McDiarmid are both proved with Chernoff
bounding method; the former approach involves no
symmetrization, whereas the latter holds for more than the
output of an algorithm).

I It would be nice to have an “average Lipschitz” bound rather
than “worst-case Lipschitz”; e.g., when working with neural
networks and the ReLU, which seems it can kill off many
inputs! But it’s not clear how to do this. Relatedly:
regularizing the gradient is sometimes used in practice?

Remarks (continued).
I The Lipschitz composition rule is more complicated with the

absolute value form of Rademacher complexity. The easiest
proof I know invokes the one here as a lemma:

Eε sup
u∈V
| 〈ε, ` ◦ v〉 | = URad

(
(` ◦ V ) ∪ (−` ◦ V )

)
.


