Lecture 20. (Sketch.)

» Project proposal meetings this Wednesday, November 14! Must
attend to receive full points!

1. Rademacher recap.
Concentration controlled one function at a time. To control many

functions, out main tool is (unnormalized) Rademacher complexity:

URad(V) := E sup (¢, u), Rad(V) := iURad(V).
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Given data S := (241, ..., Z,) and functions F, define vectors
Fis = {(f(&1),...,f(Zn)): f € F}.

Our main generalization tool involves URad(Fs), and is a
consequence of our two symmetrization lemmas and McDiarmid'’s

inequality.
Theorem. Let F be given with f(z) € [a, b] a.s.. With probability
>1-9,
. 2 In(2/4
sup Bf — B,f < ZURad(Fis) + 3(b — a) n(2/9)
feF n 2n

Remarks.
» Recall that other treatments use Rad, we'll use URad = Rad/n.

» Some classical texts provide a variety of Generalization bounds
which all require custom symmetrization arguments. Instead,
we'll prove everything using Rademacher complexity (and the
preceding Theorem). This is a standard approach, but is not
perfect: some things seem to be hard or even (as far as we
know) impossible to prove with Rademacher complexity. (An
example of a thing that is hard are cases where the preceding
theorem should scale with 1/n rather than 1/4/n.)

Remarks (continued).

» A quick note on interpretation: if V is more
expressive/complicated, then it can fit more of the random
signs, and URad(V) is larger.

» Some sanity checks.

URad({u}) = Ec (¢, u) =0,

URad({(—1,...,-1),(+1,...,4+1)}) = Ec|> _&i| = ©(v/n),

i

URad({—1,+1}") = n.




2. Linear predictors.

,Xn) into rows of X € R4,

URad({x = (w, x) : [lw|}2 < B}s}) < B||X][F.

Theorem. Collect sample S := (xg, ...

Proof. Fix any € € {—1,+1}". Then

sup Ze,-(w,x,—) = sup <W,Z€,’X,‘> =B
i

wll<B Iwll<B

We'll bound this norm with Jensen's inequality (only inequality in
whole proof!):
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E E EiXi|l| = E €iXj E E €i X
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To finish,

E Zé,‘X,‘
i

2
=E (Z@'sz +Y (ex, 61Xj>) =E> |xl* = |X]%.
i ij i

Remark. We used exactly one inequality: everywhere else we had
an equality! Indeed, the bound is tight: we can get a lower bound
with Khintchine-Kahane (E.|| 3, €ixi|l2 > C||X||F).

3. Lipschitz composition.

Lemma. Let /: R"” — R” be a vector of univariate L-lipschitz
functions. Then URad(¢o V) < LURad(V).

Proof. The idea of the proof is to “de-symmetrize” and get a
difference of coordinates to which we can apply the definition of L.

(See next page.)

Proof (continued).

URad(¢o V) = EsupZeE u;)
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= ;EQZH sup | l1(v1) — l1(w1) + z”: ei(li(u;) + fi(Wi)))

u,weV =2

1
< ZE,, sup | Llug —wi|+ Z i(ui) + ¢ (W,)))
2 u,weV

1
ZEE% sup | L(ug —wy +Z i(ui) + 2i( W,)))

uweV
LI1>W1
= E. sup Lu1+Z€€ up) | -
ueV =2

Other coordinates follow by the same procedure.




We'll overload composition notation:

(Lof)=((x,y) = U-yf(x))),
loF={lof:feF}

Corollary. Suppose ¢ is L-lipschitz and ¢ o F € [a, b] a.s.. With
probability > 1 — 9, every f € F satisfies

Ro(f) < Ro(f) + 2nLURad(J-"|5) +3(b—a) '”(22,{‘5)

Proof. Use the lipschitz composition lemma with

H=yif () = (=il ()] < Ll = yif () + yif (x)
< LIF(x) ~ F(0).

Example (logistic regression).

Suppose ||w|| < B and ||xi|| <1, and the loss is the 1-Lipschitz
logistic loss £|g(2) := In(1 + exp(z)). Note £({w, yx)) > 0 and
((w, yx)) <In(2) + (w, yx) <In(2) + B.

Combining the main Rademacher bound with the Lipschitz
composition lemma and the Rademacher bound on linear predictors,
with probability at least 1 — 6, every w € RY with |w|| < B satisfies

Re(w) < ﬁg(w) + iURad((ﬁ o F)is) + (In(2) + B)4/In(2/6)/(2n)
Sﬁg( )+2‘5w;<‘|’:+(ln(2)+8) In(2/8)/(2n)
Sﬁg( )+2B+(B+|n(2)) In(2/5)/2.
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Remarks.

» (Average case vs worst case.) Here we replaced || X||r with the

looser +/n.

» This bound scales as the SGD logistic regression bound proved
via Azuma, despite following a somewhat different route
(Azuma and McDiarmid are both proved with Chernoff
bounding method; the former approach involves no
symmetrization, whereas the latter holds for more than the
output of an algorithm).

» It would be nice to have an “average Lipschitz” bound rather
than “worst-case Lipschitz”; e.g., when working with neural
networks and the ReLU, which seems it can kill off many
inputs! But it's not clear how to do this. Relatedly:
regularizing the gradient is sometimes used in practice?

Remarks (continued).

» The Lipschitz composition rule is more complicated with the
absolute value form of Rademacher complexity. The easiest
proof | know invokes the one here as a lemma:

Eesup | (e,£0ov)|=URad ((£o V)U (Lo V)).
ueV




