Lecture 21. (Sketch.)

» Project proposal meetings today!

Rademacher recap (same slide as last time!).

Concentration controlled one function at a time. To control many
functions, out main tool is (unnormalized) Rademacher complexity:

URad(V) := E sup (e, u) ,

Rad(V) = 1URad(V).
ueV n

Given data S := (Z1,...,Z,) and functions F, define vectors
Fis = {(f(Z1),...,f(Zy)): f € F}.

Our main generalization tool involves URad(F|s), and is a
consequence of our two symmetrization lemmas and McDiarmid'’s
inequality.

Theorem. Let F be given with f(z) € [a, b] a.s.. With probability
Z ]- - 5v

~ 2 In(2/4
sup Ef — E,f < —URad(Fjs) +3(b — a) n(2/ )
feF n 2n

We proved we can peel off Lipschitz losses.

Corollary. Suppose ¢ is p-lipschitz and ¢ o F € [a, b] a.s.. With
probability > 1 — 9, every f € F satisfies

Ro(F) < Re(f) + ZH”URad(ﬁs) +3(b - a) '”(22,{5).

Now suppose we want to control misclassifications:

Prlsgn(f(X)) # Y] = R.(f) <7

We'll give two approaches:

> VC (“Vapnik-Chernvonenkis”) theory: RHS based on .
Seems easier to get bounds based on combinatorial properties
of F.

» Margin theory: RHS based on margin loss. Seems easier to get
bounds based on real-valued properties of F.

2. VC Theory.

First, some definitions. First, the zero-one/classification risk/error:

Ra(sgn(f)) = Prlsgn(f(X)) # Y], Ra(sgn(f)) = izﬂ[sgn(f(xl')) # yil
i=1
The earlier Rademacher bound will now have
URad ({(x,y) = Llsgn(f(x)) # y] : f € F}5).

This is at most 2”; we'll reduce it to a combinatorial quantity:

sgn(U) := {(sgn(v1),...,sgn(un)) :u e V},
Sh(Fs) :=sen(Fs)

Y

Sh(F; n) := sup |sgn(Fs)
Se?
1S[<n

VC(F) := sup{i € Zxg : Sh(F; i) =2'}.

Y




Remarks.
» Sh is “shatter coefficient”, VC is “VC dimension”.

» Both quantities are criticized as being too tied to their worst
case; bounds here depend on (empirical quantity!)
URad(sgn(F|s)), which can be better, but throws out the
labels.

Theorem (“VC Theorem™). With probability at least 1 — 4, every
f € F satisfies

Ry(sen(F)) < Ra(sgn(f) + iURad(sgn(ﬂS)) +3 '”(22,{5),
and
URad(sgn(Fjs)) < \/2nInSh(Fs),
InSh(Fs) < InSh(F;n) < VC(F)In(n+1).
Remarks.

> Need Sh(F|s) = o(n) "in order to learn”.

» VC(F) < oo suffices; many considered this a conceptual
breakthrough, namely “learning is possible”!

» The quantities (VC, Sh) appeared in prior work (not by V-C).
Symmetrization apparently too, though | haven't dug this up.

First step of proof: pull out the zero-one loss.

Lemma.

URad({(x,y) = L[sgn(f(x)) # y] : f € F};s) < URad(sgn(Fs)).

Proof. For each /, define

- _ 1—-yi(2z-1)
li(z) := max {0, min {1, 2}} )

which is 1-Lipschitz, and satisfies

li(sgn(f(xi)) = Lsgn(f(x;)) # yil-
(Indeed, it is the linear interpolation.) Then
URad({(x,y) — 1L[sgn(f(x)) # y] : f € F}s)
= URad({(¢1(sgn(f(x1))), - - - €n(sgn(f(xn)))) : f € F}s)
= URad(¢ o sgn(F);s)
< URad(sgn(]—")|5).

Plugging this into our Rademacher bound: w/ pr > 1 —§, Vf € F,

In(2/90)
2n

Ro(sgn(f)) < Ry(sen(F)) + iURad(sgn(]—")s) 43

Our next step is a general Rademacher bound for finite sets.

Theorem (Massart finite lemma).
URad(V) <sup,cy ||ull24/2In|V].

Remarks.
» In|V| is what we expect from union bound.

» || - ||2 (rather than arbitrary geometry) is kindof annoying and
intrinsic to these tools (subgaussian, hoeffding, ...).




We'll prove this via a few lemmas.

Lemma. If (X1,...,X,) are c>-subgaussian, then
E max; X; < cy/21In(n).

Proof. Similar to homework 2.

Lemma. If (X1,...,X,) are c’-subgaussian and independent,
S; Xi is ||€||3-subgaussian.

Proof. We did this in the concentration lecture, but here it is again:

Eexp(t Y X) = [[Eexp(tX) < [[exol(2¢2/2) = exp(2el3/2).

Proof (of Massart finite lemma).

Let € be iid Rademacher and fix u € V. Define X, ; := €;u; and
Xy = > Xu,i.

By Hoeffding lemma, X, ; is (u; — —u;)?/4 = u? -subgaussian, thus

(by Lemma) X, is ||ul|3-subgaussian. Thus

URad(V) = E. max (€, u) = E, Tea\)/(Xu < max llul|l24/2In|V].

uc

Plugging this into our bound gives

URad(sgn(Fjs)) < 1/2nSh(Fs).

One last lemma remains for the proof.
Lemma (Sauer-Shelah? Vapnik-Chervonenkis? Warren? .. .)

Let F be given, and define V' := VC(F). Then

2" when n < V|
Sh(F;n) < v
(%’) otherwise.

Moreover, Sh(F;n) < nV 4 1.

(Proof. Omitted. Exists in many standard texts.)

Remarks. (on the VC theorem.)

» Minimizing R, is NP-hard in many trivial cases, but those
require noise and neural networks can often get

R.(sgn(f)) = 0.

» Recent work prefers real-valued / scale-sensitive complexity
measures, where it is easier (?) to depend on things like weight
matrix norms in neural networks.




3. Margin bounds.

» Rather than looking at just sgn(f(x)), let's evaluate the
magnitude of f.

» These bounds will be sensitive to real-valued (rather than
combinatorial) properties of F, and also to the labels (encoded
via a “margin assumption” implicit in assuming the training
margin risk 7@7 is small).

Define £,(z) := max{0, min{1,1+ z/~}},
R (F) 1= Re, (F) = Bl (= YF(X).

Theorem. With probability > 1 — 9, Vf € F,

RA(F) < Ry (F) < R (F) + ;URad(]:) +3 '”(22,{5)

Proof. Since

I[sgn(f(x)) # y] < U[=F(x)y = 0] < £y(=F(x)y),

then R,(f) < R(f). The bound between R., and R, follows from
the fundamental Rademacher bound, and by peeling the
1/y-Lipschitz function £,,.

Remark.

» Started with Bartlett '96 “For valid generalization, the size of
the weights is more important than the size of the network”.

(Worst-case VCcan't handle scale: sgn(f) = sgn(cf) for ¢ > 0.

Margin bounds can handle scale.)

» Intuition: can wiggle (rotate up to ) predictor without
changing output labels.

» To invoke theorem, we need to show that algorithms actually
give a small 7%7 (which is stronger than requiring small ﬁz)
We'll see in homework that we often have something like this
for convex losses.

» Often these bounds are used with /; balls of predictors, which
is the same as conv(F U —F). (Next page gives some tools for
this.)

Following properties can help apply margin bounds.
Lemma.

1. URad(V) > 0.

2. URad(cV +{u}) < |c|URad(V).
3. URad(conv(V)) < URad(V).
4

. Let (V;)i>o be given with sup ¢, (u,€) >0 Ve € {—1,+1}".
(Eg., Vi=—-V;, or 0 € V;.) Then
URad(U; V) < 5=, URad(V;).

5. URad(V) = URad(—V).
Remarks.

» (3) is a mixed blessing: “Rademacher is insensitive to convex hulls”,

» (4) is true for URad).| directly: define W; := V; U —V;, which
satisfies the conditions, and note (U; V) U —(U; Vi) = U; W,
Since URad|.|(V;) = URad(W;), then URad|.|(U;V;) =
URad(U;W;) < 3",-, URad(W;) = Y-, URad (V).




Proof.

(1.) Fix any ug € V; then Ecsup, ¢y (€, v) > Ec (€, ug) = 0.
(2.) Either check directly, or use the |c|-Lipschitz functions
li(r) :=c-r+u;.

(4.) Using the condition,

Ee sup <E7 U> = E¢ sup sup <E7 U> < Ec Z sup <€7 U>
uey;V; i ueV; i ueV;

= URad(V}).

i>1

(5.) Since integrating over € is the same as integrating over —e (the
two are equivalent distributions),

URad(—V) = E¢ sup (¢, —u) = E¢ sup (—¢, —u) = URad(V).
ueV ueV

Proof (continued).

(3.) This follows since optimization over a polytope is achieved at a
corner. In detail,

URad(conv(V)) = E¢ sup  sup €, Zajuj
kZ]. U1,...,UkEV J
acAy
= E, sup ZO‘J sup (€, uj)
aEAg

=Ec | sup aj | sup (€, u
‘ k>1 Z ! ueV< ’ >
aceAy

= URad(V).




