
Lecture 21. (Sketch.)
I Project proposal meetings today!

Rademacher recap (same slide as last time!).

Concentration controlled one function at a time. To control many
functions, out main tool is (unnormalized) Rademacher complexity:

URad(V ) := E sup
u∈V
〈ε, u〉 , Rad(V ) := 1

nURad(V ).

Given data S := (Z1, . . . ,Zn) and functions F , define vectors

F|S :=
{
(f (Z1), . . . , f (Zn)) : f ∈ F} .

Our main generalization tool involves URad(F|S), and is a
consequence of our two symmetrization lemmas and McDiarmid’s
inequality.

Theorem. Let F be given with f (z) ∈ [a, b] a.s.. With probability
≥ 1− δ,

sup
f ∈F

Ef − Ênf ≤ 2
nURad(F|S) + 3(b − a)

√
ln(2/δ)
2n .

We proved we can peel off Lipschitz losses.

Corollary. Suppose ` is ρ-lipschitz and ` ◦ F ∈ [a, b] a.s.. With
probability ≥ 1− δ, every f ∈ F satisfies

R`(f ) ≤ R̂`(f ) + 2ρ
n URad(F|S) + 3(b − a)

√
ln(2/δ)
2n .

Now suppose we want to control misclassifications:

Pr[sgn(f (X )) 6= Y ] = Rz(f ) ≤?

We’ll give two approaches:
I VC (“Vapnik-Chernvonenkis”) theory: RHS based on R̂z.

Seems easier to get bounds based on combinatorial properties
of F .

I Margin theory: RHS based on margin loss. Seems easier to get
bounds based on real-valued properties of F .

2. VC Theory.
First, some definitions. First, the zero-one/classification risk/error:

Rz(sgn(f )) = Pr[sgn(f (X )) 6= Y ], R̂z(sgn(f )) = 1
n

n∑

i=1
1[sgn(f (xi)) 6= yi ].

The earlier Rademacher bound will now have

URad
({

(x , y) 7→ 1[sgn(f (x)) 6= y ] : f ∈ F}|S
)
.

This is at most 2n; we’ll reduce it to a combinatorial quantity:

sgn(U) :=
{
(sgn(u1), . . . , sgn(un)) : u ∈ V

}
,

Sh(F|S) :=
∣∣∣sgn(F|S)

∣∣∣ ,

Sh(F ; n) := sup
S∈?
|S|≤n

∣∣∣sgn(F|S)
∣∣∣ ,

VC(F) := sup{i ∈ Z≥0 : Sh(F ; i) = 2i}.



Remarks.
I Sh is “shatter coefficient”, VC is “VC dimension”.
I Both quantities are criticized as being too tied to their worst

case; bounds here depend on (empirical quantity!)
URad(sgn(F|S)), which can be better, but throws out the
labels.

Theorem (“VC Theorem”). With probability at least 1− δ, every
f ∈ F satisfies

Rz(sgn(f )) ≤ R̂z(sgn(f ) + 2
nURad(sgn(F|S)) + 3

√
ln(2/δ)
2n ,

and

URad(sgn(F|S)) ≤
√
2n ln Sh(F|S),

ln Sh(F|S) ≤ ln Sh(F ; n) ≤ VC(F) ln(n + 1).

Remarks.
I Need Sh(F|s) = o(n) “in order to learn”.
I VC(F) <∞ suffices; many considered this a conceptual

breakthrough, namely “learning is possible”!
I The quantities (VC, Sh) appeared in prior work (not by V-C).

Symmetrization apparently too, though I haven’t dug this up.

First step of proof: pull out the zero-one loss.

Lemma.
URad({(x , y) 7→ 1[sgn(f (x)) 6= y ] : f ∈ F}|S) ≤ URad(sgn(F|S)).

Proof. For each i , define

`i(z) := max



0,min

{
1, 1− yi(2z − 1)

2

}
 ,

which is 1-Lipschitz, and satisfies

`i(sgn(f (xi))) = 1[sgn(f (xi)) 6= yi ].

(Indeed, it is the linear interpolation.) Then

URad(
{
(x , y) 7→ 1[sgn(f (x)) 6= y ] : f ∈ F}|S)

= URad(
{
(`1(sgn(f (x1))), . . . , `n(sgn(f (xn)))) : f ∈ F}|S)

= URad(` ◦ sgn(F)|S)
≤ URad(sgn(F)|S).

Plugging this into our Rademacher bound: w/ pr ≥ 1− δ, ∀f ∈ F ,

Rz(sgn(f )) ≤ R̂z(sgn(f )) + 2
nURad(sgn(F)|S) + 3

√
ln(2/δ)
2n .

Our next step is a general Rademacher bound for finite sets.

Theorem (Massart finite lemma).
URad(V ) ≤ supu∈V ‖u‖2

√
2 ln |V |.

Remarks.
I ln |V | is what we expect from union bound.
I ‖ · ‖2 (rather than arbitrary geometry) is kindof annoying and

intrinsic to these tools (subgaussian, hoeffding, . . . ).



We’ll prove this via a few lemmas.

Lemma. If (X1, . . . ,Xn) are c2-subgaussian, then
Emaxi Xi ≤ c

√
2 ln(n).

Proof. Similar to homework 2.

Lemma. If (X1, . . . ,Xn) are c2
i -subgaussian and independent,∑

i Xi is ‖~c‖22-subgaussian.
Proof. We did this in the concentration lecture, but here it is again:

E exp(t
∑

i
Xi) =

∏

i
E exp(tXi) ≤

∏

i
exp(t2c2

i /2) = exp(t2‖~c‖22/2).

Proof (of Massart finite lemma).

Let ~ε be iid Rademacher and fix u ∈ V . Define Xu,i := εiui and
Xu := ∑

i Xu,i .

By Hoeffding lemma, Xu,i is (ui −−ui)2/4 = u2
i -subgaussian, thus

(by Lemma) Xu is ‖u‖22-subgaussian. Thus

URad(V ) = Eε max
u∈V
〈ε, u〉 = Eε max

u∈V
Xu ≤ max

u∈V
‖u‖2

√
2 ln |V |.

Plugging this into our bound gives

URad(sgn(F|S)) ≤
√
2nSh(F|S).

One last lemma remains for the proof.

Lemma (Sauer-Shelah? Vapnik-Chervonenkis? Warren? . . . )

Let F be given, and define V := VC(F). Then

Sh(F ; n) ≤




2n when n ≤ V ,(

en
V

)V
otherwise.

Moreover, Sh(F ; n) ≤ nV + 1.

(Proof. Omitted. Exists in many standard texts.)

Remarks. (on the VC theorem.)
I Minimizing R̂z is NP-hard in many trivial cases, but those

require noise and neural networks can often get
R̂z(sgn(f )) = 0.

I Recent work prefers real-valued / scale-sensitive complexity
measures, where it is easier (?) to depend on things like weight
matrix norms in neural networks.



3. Margin bounds.
I Rather than looking at just sgn(f (x)), let’s evaluate the

magnitude of f .
I These bounds will be sensitive to real-valued (rather than

combinatorial) properties of F , and also to the labels (encoded
via a “margin assumption” implicit in assuming the training
margin risk R̂γ is small).

Define `γ(z) := max{0,min{1, 1 + z/γ}},
Rγ(f ) := R`γ (f ) = E`γ(−Yf (X )).

Theorem. With probability ≥ 1− δ, ∀f ∈ F ,

Rz(f ) ≤ Rγ(f ) ≤ R̂γ(f ) + 2
nγURad(F) + 3

√
ln(2/δ)
2n .

Proof. Since

1[sgn(f (x)) 6= y ] ≤ 1[−f (x)y ≥ 0] ≤ `γ(−f (x)y),

then Rz(f ) ≤ Rγ(f ). The bound between Rγ and R̂γ follows from
the fundamental Rademacher bound, and by peeling the
1/γ-Lipschitz function `γ .

Remark.
I Started with Bartlett ’96 “For valid generalization, the size of

the weights is more important than the size of the network”.
(Worst-case VCcan’t handle scale: sgn(f ) = sgn(cf ) for c > 0.
Margin bounds can handle scale.)

I Intuition: can wiggle (rotate up to γ) predictor without
changing output labels.

I To invoke theorem, we need to show that algorithms actually
give a small R̂γ (which is stronger than requiring small R̂z).
We’ll see in homework that we often have something like this
for convex losses.

I Often these bounds are used with l1 balls of predictors, which
is the same as conv(F ∪−F). (Next page gives some tools for
this.)

Following properties can help apply margin bounds.

Lemma.

1. URad(V ) ≥ 0.

2. URad(cV + {u}) ≤ |c|URad(V ).

3. URad(conv(V )) ≤ URad(V ).

4. Let (Vi)i≥0 be given with supu∈Vi 〈u, ε〉 ≥ 0 ∀ε ∈ {−1,+1}n.
(E.g., Vi = −Vi , or 0 ∈ Vi .) Then
URad(∪iVi) ≤

∑
i URad(Vi).

5. URad(V ) = URad(−V ).

Remarks.
I (3) is a mixed blessing: “Rademacher is insensitive to convex hulls”,
I (4) is true for URad|·| directly: define Wi := Vi ∪ −Vi , which

satisfies the conditions, and note (∪iVi) ∪ −(∪iVi) = ∪iWi .
Since URad|·|(Vi) = URad(Wi), then URad|·|(∪iVi) =
URad(∪iWi) ≤

∑
i≥1 URad(Wi) =

∑
i≥1 URad|·|(Vi).



Proof.

(1.) Fix any u0 ∈ V ; then Eε supu∈V 〈ε, v〉 ≥ Eε 〈ε, u0〉 = 0.

(2.) Either check directly, or use the |c|-Lipschitz functions
`i(r) := c · r + ui .

(4.) Using the condition,

Eε sup
u∈∪i Vi

〈ε, u〉 = Eε sup
i

sup
u∈Vi
〈ε, u〉 ≤ Eε

∑

i
sup
u∈Vi
〈ε, u〉

=
∑

i≥1
URad(Vi).

(5.) Since integrating over ε is the same as integrating over −ε (the
two are equivalent distributions),

URad(−V ) = Eε sup
u∈V
〈ε,−u〉 = Eε sup

u∈V
〈−ε,−u〉 = URad(V ).

Proof (continued).

(3.) This follows since optimization over a polytope is achieved at a
corner. In detail,

URad(conv(V )) = Eε sup
k≥1
α∈∆k

sup
u1,...,uk∈V

〈
ε,
∑

j
αjuj

〉

= Eε sup
k≥1
α∈∆k

∑

j
αj sup

uj∈V

〈
ε, uj

〉

= Eε


 sup

k≥1
α∈∆k

∑

j
αj


 sup

u∈V
〈ε, u〉

= URad(V ).


