
Lecture 22. (Sketch.)
I Homework 2 due Wednesday.
I Today and on Wednesday, we’ll discuss VC bound for neural

networks. These bounds have a bad reputation as “loose”,
“impractical”, vacuous. so why are we studying them?
I They reveal and are sensitive to some interesting structure in

networks (the total possible number of activation patterns).
I Before we “worst-case-ify” the bounds and have lnSh(F|S), it

seems they could somehow be made average-case-y and tighter,
though I don’t know how yet. . .

1. VC Theory recap.
A few definitions:

sgn(U) :=
{

(sgn(u1), . . . , sgn(un)) : u ∈ V
}
,

Sh(F|S) :=
∣∣∣sgn(F|S)

∣∣∣ ,

Sh(F ; n) := sup
|S|≤n

∣∣∣sgn(F|S)
∣∣∣ ,

VC(F) := sup{i ∈ Z≥0 : Sh(F ; i) = 2i}.

Theorem (“VC Theorem”). With probability at least 1− δ, every
f ∈ F satisfies

Rz(sgn(f )) ≤ R̂z(sgn(f )) + 2
nURad(sgn(F|S)) + 3

√
ln(2/δ)
2n ,

and
URad(sgn(F|S)) ≤

√
2n ln Sh(F|S),

lnSh(F|S) ≤ ln Sh(F ; n) ≤ VC(F) ln(n + 1).

2. VC dimension of linear predictors.
Theorem. Define F :=

{
x 7→ sgn(〈a, x〉 − b) : a ∈ Rd , b ∈ R

}

(“linear classifiers”/“affine classifier”/ “linear threshold function
(LTF)”). Then VC(F) = d + 1.

Remarks.
I By Sauer-Shelah, Sh(F ; n) ≤ nd+1 + 1. Anthony-Bartlett

chapter 3 gives an exact equality; only changes constants of
lnVC(F ; n).

I Let’s compare to Rademacher:

URad(sgn(F|S)) ≤
√
2nd ln(n + 1),

URad(Rx 7→ 〈w , x〉 : ‖w‖ ≤ R}|S) ≤ R‖XS‖F ,

where ‖XS‖2F = ∑
x∈S ‖x‖22 ≤ n · d ·maxi ,j xi ,j . One is

scale-sensitive (and suggests regularization schemes), other is
scale-insensitive.

Proof of lower bound VC(F) ≥ d + 1.
I Suffices to show ∃S := {x1, . . . , xd+1} with Sh(F|S) = 2d+1.
I Choose S := {e1, . . . , ed , (0, . . . , 0)}.

Given any P ⊆ S, define (a, b) as

ai := 2 · 1[ei ∈ P]− 1, b := 1
2 − 1[0 ∈ P].

Then

sgn(〈a, ei〉 − b) = sgn(21[ei ∈ P]− 1− b) = 21[ei ∈ P]− 1,
sgn(〈a, 0〉 − b) = sgn(21[0 ∈ P]− 1/2) = 21[0 ∈ P]− 1,

meaning this affine classifier labels S according to P, which was an
arbitrary subset.



Proof (of upper bound VC(F) < d + 2).
I Consider any S ⊆ Rd with |S| = d + 2.
I By Radon’s Lemma (proved on next page), there exists a

partition of S into nonempty (P,N) with conv(P) ∩ conv(N).
I Label P as positive and N as negative. Given any affine

classifier, it can not be correct on all of S (and thus
VC(F) < d + 2): either it is incorrect on some of P, or else it
is correct on P, and thus has a piece of conv(N) and thus
x ∈ N labeled positive.

Theorem (Radon’s Lemma). Given S ⊆ Rd with |S| = d + 2, there
exists a partition of S into nonempty (P,N) with
conv(P) ∩ conv(S) 6= ∅.
Proof. Let S = {x1, . . . , xd+2} be given, and define {u1, . . . , ud+1}
as ui := xi − xd+2, which must be linearly dependent:
I Exist scalars (α1, . . . , αd+1) and a j with αj := −1 so that

∑

i
αiui = −uj +

∑

i 6=j
αiui = 0;

I thus xj − xd+2 = ∑
i 6=j

i<d+2
αi (xi − xd+2) and

0 = ∑
i<d+2 αixi − xd+2

∑
i<d+2 αi =: ∑j βjxj , where∑

j βj = 0 and not all βj are zero.

Proof (continued).

Set P := {i : βi > 0}, N := {i : βi ≤ 0}; where neither set is empty.

Set β := ∑
i∈P βi −

∑
i∈N βi > 0.

Since 0 = ∑
i βixi = ∑

i∈P βixi +∑
i∈N βixi , then

0
β

=
∑

i∈P

βi
β
xi +

∑

i∈N

βi
β
xi

and the point z := ∑
i∈P βixi/β = ∑

i∈N βixi/(−β) satisfies
z ∈ conv(P) ∩ conv(N).

Remarks.
I Generalizes Minsky-Papert “xor” construction from lecture 2.
I Indeed, the first appearance I know of shattering/VC was in

approximation theory, the papers of Warren and Shapiro, and
perhaps it is somewhere in Kolmogorov’s old papers.



3. VC dimension of LTF networks.
Consider iterating the previous construction, giving an “LTF
network”: a neural network with activation z 7→ 1[z ≥ 0].

We’ll analyze this by studying output of all nodes. To analyze this,
we’ll study not just the outputs, but the behavior of all nodes.

Definition.
I Given a sample S of size n and an LTF network with m nodes

(in any topologically sorted order), define activation matrix
A := Act(S;W := (a1, . . . , am)) where Aij is the output of
node j on input i , with fixed network weights W .

I Let Act(S;F) denote the set of activation matrices with
architecture fixed and weights W varying.

Remarks.
I Since last column is the labeling, |Act(S;F)| ≥ Sh(F|S).
I Act seems a nice complexity measure, but it is hard to estimate

given a single run of an algorithm (say, unlike a Lipschitz
constant).

I We’ll generalize Act to analyze ReLU networks.

Theorem.

For any LTF architecture F with p parameters,

Sh(F ; n) ≤ |Act(S;F)| ≤ (n + 1)p.

When p ≥ 12, then VC(F) ≤ 6p ln(p).

Proof.
I Topologically sort nodes, let (p1, . . . , pm) denote numbers of

respective numbers of parameters (thus ∑i pi = p).
I Proof will iteratively construct sets (U1, . . . ,Um) where Ui

partitions the weight space of nodes j ≤ i so that, within each
partition cell, the activation matrix does not vary.

I The proof will show, by induction, that |Ui | ≤ (n + 1)
∑

j≤i pj .
This completes the proof of the first claim, since
Sh(F|S) ≤ |Act(F ;S)| = |Um|.

I For convenience, define U0 = {∅}, |U0| = 1; the base case is
thus |U0| = 1 = (n + 1)0.

Proof (inductive step).

Let j ≥ 1 be given; the proof will now construct Uj+1 by refining
the partition Uj .
I Fix any cell C of Uj ; as these weights vary, the activation is

fixed, thus the input to node j + 1 is fixed for each x ∈ S.
I Therefore, on this augmented set of n inputs (S with columns

of activations appended to each example), there are (n + 1)pj+1

possible outputs via Sauer-Shelah and the VC dimension of
affine classifiers with pj+1 inputs.

I In other words, C can be refined into (n + 1)pj+1 sets; since C
was arbitrary,

|Uj+1| = |Uj |(n + 1)pj+1 ≤ (n + 1)
∑

l≤j+1 pl .



Proof (VC dimension bound).

It ermains to bound the VC dimension via this Shatter bound:
VC(F) < n

⇐=∀i ≥ n � Sh(F ; i) < 2i

⇐=∀i ≥ n � (i + 1)p < 2i

⇐⇒ ∀i ≥ n � p ln(i + 1) < i ln 2

⇐⇒ ∀i ≥ n � p < i ln(2)
ln(i + 1)

⇐=p < n ln(2)
ln(n + 1)

If n = 6p ln(p),

n ln(2)
ln(n + 1) ≥

n ln(2)
ln(2n) = 6p ln(p) ln(2)

ln 12 + ln p + ln ln p

≥ 6p ln p ln 2
3 ln p > p.

Remarks.
I Had to do handle ∀i ≥ n since VC dimension is defined via sup;

one can define funky F where Sh is not monotonic in n.
I Lower bound is Ω(p lnm); see Anthony-Bartlett chapter 6 for a

proof. This lower bound however is for a specific fixed
architecture!

I Other VC dimension bounds: ReLU networks have Õ(pL),
sigmoid networks have Õ(p2m2), and there exists a
convex-concave activation which is close to sigmoid but has VC
dimension ∞.

I Matching lower bounds exist for ReLU, not for sigmoid; but
even the “matching” lower bounds are deceptive since they
hold for a fixed architecture of a given number of parameters
and layers.


