Lecture 23. (Sketch.)

In class we also discussed a recent paper to highlight the role of random initialization in neural networks; I'm not including notes on that...

Theorem (See also Bartlett-Harvey-Liaw-Mehrabian Theorem 6).

Let fixed ReLU network \mathcal{F} be given with $p = \sum_{i=1}^{L} p_i$ parameters, L layers, $m = \sum_{i=1}^{L} m_i$ nodes. Let examples (x_1, \ldots, x_n) be given and collected into matrix X. There exists a partition U_L of the parameter space satisfying:

- ► Fix any C ∈ U_L. As parameters vary across C, activations (Z₁,..., Z_L) are fixed.
- ▶ Sh(\mathcal{F} ; n) ≤ $|\{Z_L(C) : C \in U_L\}| \le |U_L| \le (12nL)^{pL}$, where $Z_L(C)$ denotes the sign pattern in layer L for $C \in U_L$.
- If $pL^2 \ge 72$, then VC(\mathcal{F}) $\le 6pL\ln(pL)$.

1. VC dimension of ReLU networks.

Today's ReLU networks will predict with

$$\mathbf{x} \mapsto \mathcal{A}_L \sigma_{L-1} \left(\mathcal{A}_{L-1} \cdots \mathcal{A}_2 \sigma_1 (\mathcal{A}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2 \cdots + \mathbf{b}_{L-1} \right) + \mathbf{b}_L,$$

where $A_i \in \mathbb{R}^{d_i \times d_{i-1}}$ and $\sigma_i : \mathbb{R}^{d_i \to d_i}$ applies the ReLU $z \mapsto \max\{0, z\}$ coordinate-wise.

Convenient notation: collect data as rows of matrix $X \in \mathbb{R}^{n \times d}$, and define

$$egin{aligned} X_0 &\coloneqq X^\top & Z_0 &\coloneqq ext{all 1s matrix}, \ X_i &\coloneqq A_i(Z_{i-1} \odot X_{i-1}) + b_i \mathbb{1}_n^\top, & X_i &\coloneqq \mathbbm{1}[X_i \geq 0], \end{aligned}$$

where (Z_1, \ldots, Z_L) are the activation matrices.

- As with LTF networks, the prove inductively constructs partitions of the weights up through layer *i* so that the activations are fixed across all weights in each partition cell.
- Consider a fixed cell of the partition, whereby the activations are fixed zero-one matrices. As a function of the *inputs*, the ReLU network is now *an affine function*; as a function of the *weights* it is *multilinear* or rather *a polynomial of degree L*.
- Consider again a fixed cell and some layer *i*; thus σ(X_i) = Z_i ⊙ X_i is a matrix of polynomials of degree *i* (in the weights). If we can upper bound the number of possible signs of A_{i+1}(Z_i ⊙ X_i) + b_i1^T_n, then we can refine our partition of weight space and recurse. For that we need a bound on sign patterns of polynomials, as on the next slide.

Theorem (Warren '68; see also Anthony-Bartlet Theorem 8.3). Proof (of ReLU VC bound). Let F denote functions $x \mapsto f(x; w)$ which are r-degree polynomials We'll inductively construct partitions (U_0, \ldots, U_L) where U_i in $w \in \mathbb{R}^p$. If $n \ge p$, then $Sh(\mathcal{F}; n) \le 2(2enr/p)^p$. partitions the parameters of layers i < i so that for any $C \in U_i$, the activations Z_i in layer i < i are fixed for all parameter choices within **Remark.** Proof is pretty intricate, and omitted. It relates the VC dimension of *F* to the zero sets $Z_i := \{w \in \mathbb{R}^p : f(x; w) = 0\}$, C (thus let $Z_i(C)$ denote these fixed activations). which it controls with an application of Bezout's Theorem. The The proof will proceed by induction, showing $|U_i| < (12nL)^{pi}$. zero-counting technique is also used to obtain an exact Shatter coefficient for affine classifiers. **Base case** i = 0: then $U_0 = \{\emptyset\}$, Z_0 is all ones, and $|U_0| = 1 < (12nL)^{pi}$. Proof (VC bound). **Proof** (inductive step). Fix $C \in S_i$ and $(Z_1, \ldots, Z_i) = (Z_1(C), \ldots, Z_i(C))$. As with LTF networks. $VC(\mathcal{F}) < n \iff \forall i > n \, Sh(\mathcal{F}; i) < 2'$ ▶ Note $X_{i+1} = A_{i+1}(Z_i \odot X_i) + b_i \mathbf{1}_n^{\top}$ is polynomial (of degree i+1) in the parameters since (Z_1, \ldots, Z_i) are fixed. $\iff \forall i > n \cdot (12iL)^{pL} < 2^i$ $\iff \forall i > n \cdot pL \ln(12iL) < i \ln 2$ ► Therefore $|\{\mathbb{1}[X_{i+1} \geq 0] : \text{params} \in C\}| \leq \text{Sh}(i+1 \text{ deg poly}; m_i \cdot n \text{ functions})|$ $\iff \forall i \ge n \cdot pL < \frac{i \ln 2}{\ln(12il)}$ $\leq 2\left(\frac{2enm_{i+1}}{\sum_{i< i}p_i}\right)^{\sum_{j\leq i+1}p_j} \leq (12nL)^p.$ $\leftarrow pL < \frac{n \ln 2}{\ln(12 nL)}$ [Technical comment: to apply the earlier shatter bound for If $n = 6pL\ln(pL)$, polynomials, we needed $n \cdot m_{i+1} \ge \sum_i p_i$; but if (even more simply) $p \ge nm_{i+1}$, we can only have $\le 2^{nm_{i+1}} \le 2^p$ activation matrices anyway, so the bound still holds.]

• Therefore carving
$$U_i$$
 into pieces according to
 $Z_{i+1} = \mathbb{1}[X_{i+1} \ge 0]$ being fixed gives
 $|U_{i+1}| \le |U_i|(12nL)^p \le (12nL)^{p(i+1)}.$

 $\frac{n \ln 2}{\ln(12nL)} = \frac{6pL \ln(pL) \ln(2)}{\ln(72pL^2 \ln(pL))} = \frac{6pL \ln(pL) \ln(2)}{\ln(72) + \ln(pL^2) + \ln \ln(pL)}$ $\geq \frac{6pL \ln(pL) \ln(2)}{\ln(72) + \ln(pL^2) + \ln(pL) - 1} \geq \frac{6 \ln(pL) \ln(2)}{3 \ln(pL^2)}$ $= 2pL \ln 2 > pL.$

Remarks.

- ► If ReLU is replaced with a degree r ≥ 2 piecewise polynomial activation, have rⁱ-degree polynomial in each cell of partition, and shatter coefficient upper bound scales with L² not L. The lower bound in this case still has L not L²; it's not known where the looseness is.
- Lower bounds are based on digit extraction, and for each pair (p, L) require a fixed architecture.