
Lecture 23. (Sketch.)
I In class we also discussed a recent paper to highlight the role

of random initialization in neural networks; I’m not including
notes on that. . .

1. VC dimension of ReLU networks.
Today’s ReLU networks will predict with

x 7→ ALσL−1
(
AL−1 · · ·A2σ1(A1x + b1) + b2 · · ·+ bL−1

)
+ bL,

where Ai ∈ Rdi×di−1 and σi : Rdi→di applies the ReLU
z 7→ max{0, z} coordinate-wise.
Convenient notation: collect data as rows of matrix X ∈ Rn×d ,
and define

X0 := X> Z0 := all 1s matrix,
Xi := Ai(Zi−1 � Xi−1) + bi1>n , Xi := 1[Xi ≥ 0],

where (Z1, . . . ,ZL) are the activation matrices.

Theorem (See also Bartlett-Harvey-Liaw-Mehrabian Theorem 6).

Let fixed ReLU network F be given with p = ∑L
i=1 pi parameters, L

layers, m = ∑L
i=1 mi nodes. Let examples (x1, . . . , xn) be given and

collected into matrix X . There exists a partition UL of the
parameter space satisfying:
I Fix any C ∈ UL. As parameters vary across C , activations

(Z1, . . . ,ZL) are fixed.
I Sh(F ; n) ≤ |{ZL(C) : C ∈ UL}| ≤ |UL| ≤ (12nL)pL, where

ZL(C) denotes the sign pattern in layer L for C ∈ UL.
I If pL2 ≥ 72, then VC(F) ≤ 6pL ln(pL).

I As with LTF networks, the prove inductively constructs
partitions of the weights up through layer i so that the
activations are fixed across all weights in each partition cell.

I Consider a fixed cell of the partition, whereby the activations
are fixed zero-one matrices. As a function of the inputs, the
ReLU network is now an affine function; as a function of the
weights it is multilinear or rather a polynomial of degree L.

I Consider again a fixed cell and some layer i ; thus
σ(Xi) = Zi � Xi is a matrix of polynomials of degree i (in the
weights). If we can upper bound the number of possible signs
of Ai+1(Zi � Xi) + bi1>n , then we can refine our partition of
weight space and recurse. For that we need a bound on sign
patterns of polynomials, as on the next slide.



Theorem (Warren ’68; see also Anthony-Bartlet Theorem 8.3).
Let F denote functions x 7→ f (x ;w) which are r -degree polynomials
in w ∈ Rp. If n ≥ p, then Sh(F ; n) ≤ 2(2enr/p)p.

Remark. Proof is pretty intricate, and omitted. It relates the VC
dimension of F to the zero sets Zi := {w ∈ Rp : f (x ;w) = 0},
which it controls with an application of Bezout’s Theorem. The
zero-counting technique is also used to obtain an exact Shatter
coefficient for affine classifiers.

Proof (of ReLU VC bound).

We’ll inductively construct partitions (U0, . . . ,UL) where Ui
partitions the parameters of layers j ≤ i so that for any C ∈ Ui , the
activations Zj in layer j ≤ i are fixed for all parameter choices within
C (thus let Zj(C) denote these fixed activations).

The proof will proceed by induction, showing |Ui | ≤ (12nL)pi .

Base case i = 0: then U0 = {∅}, Z0 is all ones, and
|U0| = 1 ≤ (12nL)pi .

Proof (inductive step).
I Fix C ∈ Si and (Z1, . . . ,Zi) = (Z1(C), . . . ,Zi(C)).
I Note Xi+1 = Ai+1(Zi � Xi) + bi1>n is polynomial (of degree

i + 1) in the parameters since (Z1, . . . ,Zi) are fixed.
I Therefore∣∣{1[Xi+1 ≥ 0] : params ∈ C}

∣∣ ≤ Sh(i + 1 deg poly; mi · n functions)

≤ 2
(
2enmi+1∑

j≤i pj

)∑
j≤i+1 pj

≤ (12nL)p.

[ Technical comment: to apply the earlier shatter bound for
polynomials, we needed n ·mi+1 ≥

∑
j pj ; but if (even more

simply) p ≥ nmi+1, we can only have ≤ 2nmi+1 ≤ 2p activation
matrices anyway, so the bound still holds. ]

I Therefore carving Ui into pieces according to
Zi+1 = 1[Xi+1 ≥ 0] being fixed gives

|Ui+1| ≤ |Ui |(12nL)p ≤ (12nL)p(i+1).

Proof (VC bound).

As with LTF networks,
VC(F) < n⇐= ∀i ≥ n � Sh(F ; i) < 2i

⇐= ∀i ≥ n � (12iL)pL < 2i

⇐⇒ ∀i ≥ n � pL ln(12iL) < i ln 2

⇐⇒ ∀i ≥ n � pL < i ln 2
ln(12iL)

⇐= pL < n ln 2
ln(12nL)

If n = 6pL ln(pL),
n ln 2

ln(12nL) = 6pL ln(pL) ln(2)
ln(72pL2 ln(pL)) = 6pL ln(pL) ln(2)

ln(72) + ln(pL2) + ln ln(pL)

≥ 6pL ln(pL) ln(2)
ln(72) + ln(pL2) + ln(pL)− 1 ≥

6 ln(pL) ln(2)
3 ln(pL2)

= 2pL ln 2 > pL.



Remarks.
I If ReLU is replaced with a degree r ≥ 2 piecewise polynomial

activation, have r i -degree polynomial in each cell of partition,
and shatter coefficient upper bound scales with L2 not L. The
lower bound in this case still has L not L2; it’s not known
where the looseness is.

I Lower bounds are based on digit extraction, and for each pair
(p, L) require a fixed architecture.


