Lecture 23. (Sketch.)

» In class we also discussed a recent paper to highlight the role
of random initialization in neural networks; I'm not including
notes on that. ..

1. VC dimension of ReLU networks.

Today's ReLU networks will predict with
x—= Aror—1 (A—1- - Aso1(Aix + b1) + bo-- -+ by_1) + by,

where A; € R%*9-1 and ¢; : R%~9 applies the ReLU
z — max{0, z} coordinate-wise.

Convenient notation: collect data as rows of matrix X € R"*9,
and define

Xo = ydl Zo := all 1s matrix,
Xi = A(Zi-1 0 Xi_1) + b1, Xi:=1[X; > 0],

where (Z1,...,Z;) are the activation matrices.

Theorem (See also Bartlett-Harvey-Liaw-Mehrabian Theorem 6).

Let fixed ReLU network F be given with p = Z,-Lzl p;i parameters, L
layers, m = S_%_| m; nodes. Let examples (xi, ..., x,) be given and
collected into matrix X. There exists a partition U; of the
parameter space satisfying:

» Fix any C € U;. As parameters vary across C, activations
(Z1,...,Z;) are fixed.

> Sh(F;n) < [{Zu(C) : C € Up}| < |Up| < (12nL)P*, where
Z;(C) denotes the sign pattern in layer L for C € Uj.

> If pL? > 72, then VC(F) < 6pLIn(pL).

» As with LTF networks, the prove inductively constructs
partitions of the weights up through layer i so that the
activations are fixed across all weights in each partition cell.

» Consider a fixed cell of the partition, whereby the activations
are fixed zero-one matrices. As a function of the inputs, the
ReLU network is now an affine function; as a function of the
weights it is multilinear or rather a polynomial of degree L.

» Consider again a fixed cell and some layer i; thus
o(Xi) = Z; ® X; is a matrix of polynomials of degree i (in the
weights). If we can upper bound the number of possible signs
of Aiy1(Z; ® X;) + bi1;}, then we can refine our partition of
weight space and recurse. For that we need a bound on sign
patterns of polynomials, as on the next slide.




Theorem (Warren '68; see also Anthony-Bartlet Theorem 8.3).
Let F denote functions x — f(x; w) which are r-degree polynomials
in w € RP. If n> p, then Sh(F; n) < 2(2enr/p)P.

Remark. Proof is pretty intricate, and omitted. It relates the VC
dimension of F to the zero sets Z; := {w € RP : f(x; w) = 0},
which it controls with an application of Bezout's Theorem. The
zero-counting technique is also used to obtain an exact Shatter
coefficient for affine classifiers.

Proof (of ReLU VC bound).

We'll inductively construct partitions (Up, ..., Uy) where U;
partitions the parameters of layers j < i so that for any C € U;, the
activations Z; in layer j </ are fixed for all parameter choices within
C (thus let Z;(C) denote these fixed activations).

The proof will proceed by induction, showing |U;| < (12nL)P'.

Base case i = 0: then Uy = {0}, Zp is all ones, and
|Up| = 1 < (12nL)P'.

Proof (inductive step).
» Fix CeS; and (Zl, ceey Z,) = (Zl(C), e Z,(C))
» Note Xj;1 = A1 1(Z © X;) + b;1} is polynomial (of degree
i+ 1) in the parameters since (Zi, ..., Z;) are fixed.

» Therefore
[{1[Xi+1 > 0] : params € C}| < Sh(i + 1 deg poly; m; - n functions)

<9 <2enn‘li-|-1>zj<i+1 h
T\ 2<iP

[ Technical comment: to apply the earlier shatter bound for

polynomials, we needed n-mj11 > 3; pj;; but if (even more

simply) p > nmj;1, we can only have < 2"™Mi+1 < 2P activation

matrices anyway, so the bound still holds. ]

< (12nL)".

» Therefore carving U; into pieces according to
Ziy1 = 1[Xi+1 > 0] being fixed gives

|Ui1] < |Ui|(12nL)P < (12nL)PUHD),

Proof (VC bound).
As with LTF networks,
VC(F) < n<=Vi>n.Sh(F;i) <2
—=Vi>n.(12iL)Pt <2/

<= Vi>n.plLin(12iL) < iln2

iln2
i > n.pl

= Vizn.pl < i
e pl < nin?2
P In(12nL)

If n=6pLIn(pL),

nin2  6pLin(pL)In(2) 6pLIn(pL)In(2)
In(12nL) — In(72pL21In(pL)) ~ In(72) + In(pL2) + InIn(pL)
6pLIn(pL)In(2) 6In(pL)In(2)
~ In(72) + In(pL?) + In(pL) — 1 =  3In(pL?)

=2pLin2 > plL.




Remarks.

» If RelLU is replaced with a degree r > 2 piecewise polynomial
activation, have ri—degree polynomial in each cell of partition,
and shatter coefficient upper bound scales with L2 not L. The
lower bound in this case still has L not L2; it's not known
where the looseness is.

» Lower bounds are based on digit extraction, and for each pair
(p, L) require a fixed architecture.




