Lecture 23. (Sketch.)

- In class we also discussed a recent paper to highlight the role of random initialization in neural networks; I'm not including notes on that. . .

1. VC dimension of ReLU networks.

Today's ReLU networks will predict with

$$
x \mapsto A_{L} \sigma_{L-1}\left(A_{L-1} \cdots A_{2} \sigma_{1}\left(A_{1} x+b_{1}\right)+b_{2} \cdots+b_{L-1}\right)+b_{L},
$$

where $A_{i} \in \mathbb{R}^{d_{i} \times d_{i-1}}$ and $\sigma_{i}: \mathbb{R}^{d_{i} \rightarrow d_{i}}$ applies the ReLU $z \mapsto \max \{0, z\}$ coordinate-wise.

Convenient notation: collect data as rows of matrix $X \in \mathbb{R}^{n \times d}$, and define

$$
\begin{array}{ll}
X_{0}:=X^{\top} & Z_{0}:=\text { all 1s matrix }, \\
X_{i}:=A_{i}\left(Z_{i-1} \odot X_{i-1}\right)+b_{i} 1_{n}^{\top}, & X_{i}:=\mathbb{1}\left[X_{i} \geq 0\right]
\end{array}
$$

where $\left(Z_{1}, \ldots, Z_{L}\right)$ are the activation matrices.

- As with LTF networks, the prove inductively constructs partitions of the weights up through layer i so that the activations are fixed across all weights in each partition cell.
- Consider a fixed cell of the partition, whereby the activations are fixed zero-one matrices. As a function of the inputs, the ReLU network is now an affine function; as a function of the weights it is multilinear or rather a polynomial of degree L.
- Consider again a fixed cell and some layer i; thus $\sigma\left(X_{i}\right)=Z_{i} \odot X_{i}$ is a matrix of polynomials of degree i (in the weights). If we can upper bound the number of possible signs of $A_{i+1}\left(Z_{i} \odot X_{i}\right)+b_{i} 1_{n}^{\top}$, then we can refine our partition of weight space and recurse. For that we need a bound on sign patterns of polynomials, as on the next slide.

Theorem (Warren '68; see also Anthony-Bartlet Theorem 8.3). Let F denote functions $x \mapsto f(x ; w)$ which are r-degree polynomials in $w \in \mathbb{R}^{p}$. If $n \geq p$, then $\operatorname{Sh}(\mathcal{F} ; n) \leq 2(2 e n r / p)^{p}$.
Remark. Proof is pretty intricate, and omitted. It relates the VC dimension of F to the zero sets $Z_{i}:=\left\{w \in \mathbb{R}^{p}: f(x ; w)=0\right\}$, which it controls with an application of Bezout's Theorem. The zero-counting technique is also used to obtain an exact Shatter coefficient for affine classifiers.

Proof (of ReLU VC bound).

We'll inductively construct partitions $\left(U_{0}, \ldots, U_{L}\right)$ where U_{i} partitions the parameters of layers $j \leq i$ so that for any $C \in U_{i}$, the activations Z_{j} in layer $j \leq i$ are fixed for all parameter choices within C (thus let $Z_{j}(C)$ denote these fixed activations).
The proof will proceed by induction, showing $\left|U_{i}\right| \leq(12 n L)^{p i}$.
Base case $i=0$: then $U_{0}=\{\emptyset\}, Z_{0}$ is all ones, and $\left|U_{0}\right|=1 \leq(12 n L)^{p i}$.

Proof (inductive step).

- Fix $C \in S_{i}$ and $\left(Z_{1}, \ldots, Z_{i}\right)=\left(Z_{1}(C), \ldots, Z_{i}(C)\right)$.
- Note $X_{i+1}=A_{i+1}\left(Z_{i} \odot X_{i}\right)+b_{i} 1_{n}^{\top}$ is polynomial (of degree $i+1)$ in the parameters since $\left(Z_{1}, \ldots, Z_{i}\right)$ are fixed.
- Therefore
$\mid\left\{\mathbb{1}\left[X_{i+1} \geq 0\right]:\right.$ params $\left.\in C\right\} \mid \leq \operatorname{Sh}\left(i+1\right.$ deg poly; $m_{i} \cdot n$ functions $)$

$$
\leq 2\left(\frac{2 e n m_{i+1}}{\sum_{j \leq i} p_{j}}\right)^{\sum_{j \leq i+1} p_{j}} \leq(12 n L)^{p}
$$

[Technical comment: to apply the earlier shatter bound for polynomials, we needed $n \cdot m_{i+1} \geq \sum_{j} p_{j}$; but if (even more simply) $p \geq n m_{i+1}$, we can only have $\leq 2^{n m_{i+1}} \leq 2^{p}$ activation matrices anyway, so the bound still holds.]

- Therefore carving U_{i} into pieces according to $Z_{i+1}=\mathbb{1}\left[X_{i+1} \geq 0\right]$ being fixed gives

$$
\left|U_{i+1}\right| \leq\left|U_{i}\right|(12 n L)^{p} \leq(12 n L)^{p(i+1)} .
$$

Proof (VC bound).

As with LTF networks,

$$
\begin{aligned}
\mathrm{VC}(\mathcal{F})<n & \Longleftrightarrow \forall i \geq n \cdot \operatorname{Sh}(\mathcal{F} ; i)<2^{i} \\
& \Longleftrightarrow \forall i \geq n \cdot(12 i L)^{p L}<2^{i} \\
& \Longleftrightarrow \forall i \geq n \cdot p L \ln (12 i L)<i \ln 2 \\
& \Longleftrightarrow \forall i \geq n \cdot p L<\frac{i \ln 2}{\ln (12 i L)} \\
& \Longleftrightarrow p L<\frac{n \ln 2}{\ln (12 n L)}
\end{aligned}
$$

If $n=6 p L \ln (p L)$,

$$
\begin{aligned}
\frac{n \ln 2}{\ln (12 n L)} & =\frac{6 p L \ln (p L) \ln (2)}{\ln \left(72 p L^{2} \ln (p L)\right)}=\frac{6 p L \ln (p L \ln (2)}{\ln (72)+\ln \left(p L^{2}\right)+\ln \ln (p L)} \\
& \geq \frac{6 p L \ln (p L) \ln (2)}{\ln (72)+\ln \left(p L^{2}\right)+\ln (p L)-1} \geq \frac{6 \ln (p L) \ln (2)}{3 \ln \left(p L^{2}\right)} \\
& =2 p L \ln 2>p L .
\end{aligned}
$$

Remarks.

- If ReLU is replaced with a degree $r \geq 2$ piecewise polynomial activation, have r^{i}-degree polynomial in each cell of partition, and shatter coefficient upper bound scales with L^{2} not L. The lower bound in this case still has L not L^{2}; it's not known where the looseness is.
- Lower bounds are based on digit extraction, and for each pair (p, L) require a fixed architecture.

