
Lecture 24. (Sketch.)
I Hwk3 is out. It is due December 18. After today’s lecture, you

have everything you need to solve all problems.
I Project presentations next week!

Rademacher recap (same slide as before!).

Concentration controlled one function at a time. To control many
functions, out main tool is (unnormalized) Rademacher complexity:

URad(V ) := E sup
u∈V
〈ε, u〉 , Rad(V ) := 1

nURad(V ).

Given data S := (Z1, . . . ,Zn) and functions F , define vectors

F|S :=
{

(f (Z1), . . . , f (Zn)) : f ∈ F} .

Our main generalization tool involves URad(F|S), and is a
consequence of our two symmetrization lemmas and McDiarmid’s
inequality.

Theorem. Let F be given with f (z) ∈ [a, b] a.s.. With probability
≥ 1− δ,

sup
f ∈F

Ef − Ênf ≤ 2
nURad(F|S) + 3(b − a)

√
ln(2/δ)
2n .

Theorem (Massart finite lemma).
URad(V ) ≤ supu∈V ‖u‖2

√
2 ln |V |.

This lemma can be applied to infinite F by discretizing F|S .

1. Covering numbers; Pollard’s bound.
We’ll discretize via covering numbers.

Definition. Given a set U, scale ε, norm ‖ · ‖, V ⊆ U is a (proper)
cover when

sup
a∈U

inf
b∈V
‖a − b‖ ≤ ε.

Let N (U, ε, ‖ · ‖) denote the covering number: the minimum
cardinality (proper) cover.

Remarks.
I “Improper” covers drop the requirement V ⊆ U. (We’ll come

back to this.)
I Most treatments define special norms with normalization 1/n

baked in; we’ll use unnormalized Rademacher complexity and
covering numbers.

I At the end of an early lecture we gave “primitive covers”; those
used F not F|S and ‖ · ‖u.



Theorem (Pollard bound). Given U ⊆ Rn,

URad(U) ≤ inf
α>0


α
√

n +
(

sup
a∈U
‖a‖2

)√
2 lnN (U, α, ‖ · ‖2)


 .

Remarks.
I ‖ · ‖2 comes from applying Massart. It’s unclear how to handle

other norms without some technical slop.

Proof. Let α > 0 be arbitrary, and suppose N (U, α, ‖ · ‖2) =∞
(otherwise bound holds trivially). Let V denote a minimal cover,
and V (a) its closest element to a ∈ U. Then

URad(U) = E sup
a∈U
〈ε, v〉

= E sup
a∈U

〈
ε, v − V (a) + V (a)

〉

= E sup
a∈U

(〈
ε,V (a)

〉
+
〈
ε, v − V (a)

〉)

≤ E sup
a∈U

(〈
ε,V (a)

〉
+ ‖ε‖ · ‖v − V (a)‖

)

≤ URad(V ) + α
√

n

≤ sup
b∈V

(‖b‖2)
√
2 ln |V |+ α

√
n

≤ sup
a∈U

(‖a‖2)
√
2 ln |V |+ α

√
n,

and the bound follows since α > 0 was arbitrary.

Remarks.
I The same proof handles improper covers with minor

adjustment: for every b ∈ V , there must be U(b) ∈ U with
‖b −U(v)‖ ≤ α (otherwise, b can be moved closer to U), thus

sup
b∈V
‖b‖2 ≤ sup

b∈V
‖b − U(b)‖2 + ‖U(b)‖2 ≤ α + sup

a∈U
‖a‖2.

I To handle other norms, superficially we need two adjustments:
Cauchy-Schwarz can be replaced with Hölder, but it’s unclear
how to replace Massart without slop relating different norms.

2. The Dudley entropy integral.
I As made clear in the homework, the Pollard bound is not tight.
I We will present a different bound, the Dudley entropy integral,

and in a remark at the end explain that it is tight with
Rademacher complexity (and note the Pollard bound!).



I The Dudley entropy integral works at multiple scales.
I Suppose we have covers (VN ,VN−1, ...) at scales

(αN , αN/2, αN/4, . . .).
I Given a ∈ U, choosing Vi (a) := arg minb∈Vi ‖a − b‖,

a = (a−VN(a))+(VN(a)−VN−1(a))+(VN−1(a)−VN−2(a))+· · · .
We are thus rewriting a as a sequence of increments at
different scales.

I One way to think of it is as writing a number as its binary
expansion

x = (0.b1b2b3 . . . ) =
∑

i≥1

(bi .bi+1 . . .)− (0.bi+1 . . .)
2i =

∑

i≥1

bi
2i .

In the Dudley entropy integral, we are covering these
increments bi , rather than the number x directly.

I One can cover increments via covering numbers for the base set,
and that is why these basic covering numbers appear in the
Dudley entropy integral. But internally, the argument really is
about these increments.

Theorem (Dudley). Let U ⊆ [−1,+1]n be given with 0 ∈ U.

URad(U) ≤ inf
N∈Z≥1


n · 2−N+1 + 6

√
n

N−1∑

i=1
2−i
√

lnN (U, 2−i√n, ‖ · ‖2




≤ inf
α>0

(
4α
√

n + 12
∫ √n/2

α

√
lnN (U, β, ‖ · ‖2 dβ

)
.

Proof. We’ll do the discrete sum first. The integral follows by
relating an integral to its Riemann sum.
I Let N ≥ 1 be arbitrary.
I For i ∈ {1, . . . ,N}, define scales αi := √n21−i .
I Define cover V1 := {0}; since U ⊆ [−1,+1]n, this is a minimal

cover at scale √n = α1.
I Let Vi for i ∈ {2, . . . ,N} denote any minimal cover at scale αi ,

meaning |Vi | = N (U, αi , ‖ · ‖2).

Proof (continued).

Since U 3 a = (a − VN(a)) +∑N−1
i=1

(
Vi+1(a)− Vi (a)

)
+ V1(a),

URad(U)
= E sup

a∈U
〈ε, a〉

= E sup
a∈U


〈ε, a − VN(a)

〉
+

N−1∑

i=1

〈
ε,Vi+1(a)− Vi (a)

〉
+
〈
ε,V1(a)

〉



≤ E sup
a∈U

〈
ε, a − VN(a)

〉

+
N−1∑

i=1
E sup

a∈U

〈
ε,Vi+1 − Vi (a)

〉

+ E sup
a∈U

〈
ε,V1(a)

〉
.

Let’s now control these terms separately.

Proof (continued). The first and last terms are easy:
E sup

a∈U
εV1(a) = E 〈ε, 0〉 = 0,

E sup
a∈U

〈
ε, a − VN(a)

〉 ≤ E sup
a∈U
‖ε‖‖a − VN(a)‖ ≤ √nαN = n21−N .

For the middle term, define increment class
Wi := {Vi+1(a)− Vi (a) : a ∈ U}, whereby
|Wi | ≤ |Vi+1| · |Vi | ≤ |Vi+1|2, and

E sup
a∈U

〈
ε,Vi+1(a)− Vi (a)

〉
= URad(Wi )

≤
(

sup
w∈Wi

‖w‖2
)√

2 ln |Wi | ≤
(

sup
w∈Wi

‖w‖2
)√

4 ln |Vi+1|,

sup
w∈Wi

‖w‖ ≤ sup
a∈U
‖Vi+1‖+ ‖a − Vi (a)‖ ≤ αi+1 + αi = 3αi+1.

Combining these bounds,

URad(U) ≤ n21−N + 0 +
N∑

i=1
6
√

n2−i
√

lnN (U, 2−i√n, ‖ · ‖2.

N ≥ 1 was arbitrary, so applying infN≥1 gives the first bound.



Proof (integral form). Since lnN (U, β, ‖ · ‖2) is nonincreasing in β,
the integral upper bounds the Riemann sum:

URad(U) ≤ n21−N + 6
N−1∑

i=1
αi+1

√
lnN (U, αi+1, ‖ · ‖)

= n21−N + 12
N−1∑

i=1
(αi+1 − αi+2)

√
lnN (U, αi+1, ‖ · ‖)

≤ √nαN + 12
∫ α2

αN+1

√
lnN (U, αi+1, ‖ · ‖) dβ.

To finish, pick α > 0 and N with

αN+1 ≥ α > αN+2 = αN+1
2 = αN+2

4 ,

whereby

URad(U) ≤ √nαN + 12
∫ α2

αN+1

√
lnN (U, αi+1, ‖ · ‖) dβ

≤ 4
√

nα + 12
∫ √n/2

α

√
lnN (U, αi+1, ‖ · ‖) dβ.

Remarks.
I Tightness of Dudley: Sudakov’s lower bound says there exists a

universal C with

URad(U) ≥ c
ln(n) sup

α>0
α
√

lnN (U, α, ‖ · ‖),

which implies URad(U) = Θ̃ (Dudley entropy integral).
I Taking the notion of increments to heart and generalizing the

proof gives the concept of chaining. One key question there is
tightening the relationship with Rademacher complexity
(shrinking constants and log factors in the above bound).

I Another term for covering is “metric entropy”.
I Recall once again that we drop the normalization 1/n from

URad and the choice of norm when covering.


