
Lecture 25.
I Project presentations next week.

I 2 slides! 5 minutes!
I You’ll need to upload your slides some time December 12; I’ll

post details on piazza.
I Presentation is for class, not for me!
I Written part due December 20.

1. Covering and Rademacher bounds for deep networks.
Theorem. Let F denote a network architecture with L layers,
ρ-Lipschitz activations with σ(0) = 0, and ‖a‖1 ≤W for all node
weights a. Then

URad(F|S) ≤ ‖X‖2,∞(2ρW )L
√
2 ln(d).

Proof.

Let Fi denote functions computed by nodes in layer i . It’ll be shown
by induction that

URad((Fi)|S) ≤ ‖X‖2,∞(2ρW )i
√
2 ln(d).

Base case (i = 0):

URad((Fi)|S) = URad
(
{x 7→ xi : i ∈ {1, . . . , d}}|S

)

≤
(

max
i
‖(x1)i , . . . , (xn)i‖2

)√
2 ln(d)

= ‖X‖2,∞
√
2 ln d = ‖X‖2,∞(2ρW )0√2 ln d .

Proof (inductive step; some steps use a big Rademacher lemma
from Lecture 21).

Since 0 = σ(
〈
0,F (x)

〉
) ∈ Fi+1,

URad((Fi+1)|S) =
({

x 7→ σ(Wg(x)) : g ∈ conv(−Fi ∪ Fi)
}
|S
)

≤ ρWURad
(
−(Fi)|S ∪ (Fi)|S

)

≤ 2ρWURad
(
(Fi)|S

)

≤ (2ρW )i+1‖X‖2,∞
√
2 ln d .

Remarks.
I This bound depends on a Lipschitz constant wrt ‖ · ‖∞; getting

a bound with ‖ · ‖2 incurs other factors, but can also get rid of
the 2L; see the work of Neyshabur-Tomioka-Srebro,
Bartlett-Foster-Telgarsky, Golowich-Rakhlin-Shamir,
Barron-Klusowski.

I The best lower bound is roughly what you get by writing a
linear function as a deep network _̈.

Remark (another approach).
I As in the ReLU VC proof, let X0 = X> be a data matrix with

examples as columns, and Xi = σi(WiXi−1) denote the output
of layer i . To build a cover X̂i+1 of Xi+1,

‖Xi+1 − X̂i+1‖F ≤ ρ‖WiXi − Ŵi X̂i+1‖F
≤ ρ‖WiXi −Wi X̂i+1‖F + ρ‖Wi X̂i − Ŵi X̂i+1‖F
≤ ρ‖Wi‖2‖Xi − X̂i+1‖F + ρ‖Wi X̂i − Ŵi X̂i+1‖F ,

where the first term may be handled by induction, and the
second by a per-layer covering number. This argument appears
in Anthony-Bartlett’s book, and is also used in the
Bartlett-Foster-Telgarsky “spectrally-normalized” bound.

I This proof does not “coordinate” the layers in any way, and has
two exponential dependences on layers L: a product of
Lipschitz constants ∏i≤L ρ‖Wi‖2, and because it must product
the per-layer covers (second term) together.



2. Complexity of Lipschitz functions.
Note that this bound, while scaling with the Lipschitz constant of
the networks, is much better than the Rademacher complexity of
arbitrary Lipschitz functions.

Theorem. Let data S = (x1, . . . , xn) be given with
R := maxi ,j ‖xi − xj‖∞. Let F denote all ρ-Lipschitz functions from
[−R,+R]d → [−B,+B] (where Lipschitz is measured wrt ‖ · ‖∞).
Then the improper covering number Ñ satisfies

ln Ñ (F , ε, ‖ · ‖u) ≤ max



0,

⌈
4ρ(R + ε)

ε

⌉d
ln
⌈
2B
ε

⌉
 .

Remark.
I Exponential in dimension!

Proof.
I Suppose B > ε, otherwise can use the trivial cover {x 7→ 0}.

I Subdivide [−R − ε,+R + ε]d into
(

4(R+ε)ρ
ε

)d
cubes of side

length ε/2ρ; call this U.
I Subdivide [−B,+B] into intervals of length ε, thus 2B/ε

elements; call this V .
I Our candidate cover G is the set of all piecewise constant maps

from [−R − ε,+R + ε]d to [−B,+B] discretized according to
U and V , meaning

|G| ≤
⌈
2B
ε

⌉
⌈

4(R+ε)ρ
ε

⌉d

.

Proof (continued).

To show this is an improper cover, given f ∈ F , choose g ∈ G by
proceeding over each C ∈ U, and assigning g|C ∈ V to be the
closest element to f (xC ), where xC is the midpoint of C . Then

‖f − g‖u = sup
C∈U

sup
x∈C
|f (x)− g(x)|

≤ sup
C∈U

sup
x∈C

(|f (x)− f (xC )|+ |f (xC )− g(x)|)

≤ sup
C∈U

sup
x∈C

(
ρ‖x − xC‖∞ + ε

2

)

≤ sup
C∈U

sup
x∈C

(
ρ(ε/(4ρ)) + ε

2

)
≤ ε


