Lecture 25.

» Project presentations next week.
» 2 slides! 5 minutes!

» You'll need to upload your slides some time December 12; I'll
post details on piazza.

» Presentation is for class, not for me!

» Written part due December 20.

1. Covering and Rademacher bounds for deep networks.

Theorem. Let F denote a network architecture with L layers,
p-Lipschitz activations with ¢(0) = 0, and ||a]|1 < W for all node
weights a. Then

URad(Fis) < [IX[|2.00 (20W)"/2In(d).

Proof.

Let F; denote functions computed by nodes in layer i. It'll be shown
by induction that

URad((F7);s) < [IX]l2,0c(2pW)"y/2In(d).
Base case (i = 0):

URad((F7)js) = URad ({x > x; :i € {1,...,d}};s)

s(m,.axu(xl),-,...,(xn),-uz) 2In(d)
= | X]l2.00V2Ind = || X]|2,00(20W)°V2In d.

Proof (inductive step; some steps use a big Rademacher lemma
from Lecture 21).

Since 0 = o({0, F(x))) € Fit1,
URad((Fis1)js) = ({x = o(We(x)) : & € conv(—F; U F)} )
< pWURad (—(f,-)|s U (F,-)|s)
< 2pWURad ((F)s)
< (2oW) X |2,00V2In d.

Remarks.

» This bound depends on a Lipschitz constant wrt || - ||oo; getting
a bound with || - ||2 incurs other factors, but can also get rid of
the 2L: see the work of Neyshabur-Tomioka-Srebro,
Bartlett-Foster-Telgarsky, Golowich-Rakhlin-Shamir,
Barron-Klusowski.

» The best lower bound is roughly what you get by writing a
linear function as a deep network —~.

Remark (another approach).

» As in the ReLU VC proof, let Xo = X" be a data matrix with
examples as columns, and X; = o;(W;X;_1) denote the output
of layer i. To build a cover X1 of Xiyq,

| Xix1 — )?i—i-lHF < p||W;Xi — /M\/i)A<i+1HF
< pl|WiXi — WiXisa |l F + pll WiXi — WiXisa |l F
< plIWill2l|Xi = Xiv1llF + pl|WiXi — WiXitallF,

where the first term may be handled by induction, and the
second by a per-layer covering number. This argument appears
in Anthony-Bartlett's book, and is also used in the
Bartlett-Foster-Telgarsky “spectrally-normalized” bound.

» This proof does not “coordinate” the layers in any way, and has
two exponential dependences on layers L: a product of
Lipschitz constants [[;; p||W;||2, and because it must product
the per-layer covers (second term) together.




2. Complexity of Lipschitz functions. Proof.

Note that this bound, while scaling with the Lipschitz constant of > Suppose B > ¢, otherwise can use the trivial cover {x — 0}.
the networks, is much better than the Rademacher complexity of

A - d 4(R+e)p? -
arbitrary Lipschitz functions. » Subdivide [-R — ¢, +R + €]? into ( : ) cubes of side

length €¢/2p; call this U.
Theorem. Let data S = (x1,...,x,) be given with

R := max; ||xi — Xj||cc- Let F denote all p-Lipschitz functions from > Subdivide [-B, +B] into intervals of length €, thus 2B/e
[—R,+R]? — [-B, +B] (where Lipschitz is measured wrt | - ||). elements; call this V.
Then the improper covering number V' satisfies » Our candidate cover G is the set of all piecewise constant maps
d from [—-R — ¢, +R + €]? to [~ B, +B] discretized according to
— 4o(R 2B '
N(F.e,] - ) < max {0, {p( + ﬂ n {w } | U and V, meaning
€ €
d
4(R+e)p
2511 |
Remark. G| < ~

» Exponential in dimension!

Proof (continued).

To show this is an improper cover, given f € F, choose g € G by
proceeding over each C € U, and assigning g|c € V to be the
closest element to f(xc¢), where x¢ is the midpoint of C. Then

|f — gllu = sup sup |f(x) — g(x)|
CelU xeC

sup sup (|f(x) — f(xc)| + |f(xc) — g(x)|)
CelUxeC
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€
sup sup <,0||X — Xclloo + 2)
CelU xeC

€
sup sup <p(€/(4p)) + 2) <e
CelU xeC
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