Lecture 26.

- The purpose of lectures 26 and 27 is to highlight some generalization bounds for which I do not see a clear way to obtain a proof via Rademacher complexity.
- I will not type the details for these lectures, instead only give pointers.

k-nearest-neighbor.

- Lecture 26 focused on $k-n n$, indeed just 1-nn. Here is the basic story:
- On one hand, it seems to go against what we know about generalization: it memorizes the training set, and indeed perfectly labels any data (with distinct x_{i} 's).
- On the other hand, the algorithm is "simple" and has "geometric regularity". In class, we proved that $\operatorname{Pr}\left[\lim _{n \rightarrow \infty}\left\|X_{1}(X)-X\right\|_{2}=0\right]=1$, where $X_{1}(X)$ is the nearest neighbor to X in a training set of size n : that is, as the training set size $\rightarrow \infty$, then for any new data point, asymptotically the nearest neighbor will be arbitrarily close.
- From here, with some work, we can prove that 1-nn gets error which is roughly twice the optimal error amongst all possible classification rules.
- The proof uses lots of conditioning tricks, and direct geometric reasoning; overall it does not look like our other generalization proofs!
- The source material for this lecture was compiled by Daniel Hsu, who tells me he learned it from Sanjoy Dasgupta. I can recommend these references:
- The Devroye-Györfi-Lugosi book "A probabilistic theory of pattern classification" has a version of the proof I outlined (search for "Stone's Lemma").
- There is also some material in the Cover-Thomas Information Theory book.
- (Continued.)
- The above material (and the proofs I showed in class) are asymptotic, in expectation, and only for the I_{2} metric. For a treatment that is non-asymptotic (finite sample), high probability and works for a variety of metrics, see Chaudhuri-Dasgupta "Rates of Convergence for Nearest Neighbor Classification". This paper focuses on a specific smoothness property of the regression function $\eta(x)=\operatorname{Pr}[Y=1 \mid X=x]$; specifically,

$$
\frac{1}{\mu(B(x, r))} \int_{B(x, r)} \eta(z) \mathrm{d} \mu(z) \stackrel{?}{=} \eta(x)
$$

where $B(x, r)=\{z:\|x-z\| \leq r\}$? We only discussed $X_{1}(X) \rightarrow X$ above, but we also need to reason about η to make the proof go through. Chaudhuri-Dasgupta quantify this in order to get rates.

