Lecture 27.

» Today | talked about a second thing that is painful with
Rademacher complexity: getting generalization bounds that
have 1/n rather than 1/4/n. For neural nets this is not
currently a huge deal (because many of the bounds are > 1 so
squaring doesn't help), but:

» eventually we'll have good bounds and it will matter, in
particular

> there are situations where the lower bound is 1/n, and

» it's important to point out that maybe Rademacher complexity
isn't the ultimate end-all be-all of generalization tools due to its
awkwardness with these 1/n style bounds (which in the
literature are often called “fast rates").

» In class | said our concentration bounds are by analogy to
Gaussians. But for instance with classification, our distribution
of errors is a Binomial, which is only well approximated by a
gaussian if the bias term p is not too small relative to 1/n.

» Here are some examples | discussed in class:

P> A direct VC argument; see chapter 12 of Devroye-Gyorfi-Lugosi
“A probabilistic theory of pattern classification”.

P If F is convex and the loss { is strongly convex, we can roughly
get what we want, but we have to replace R(f) in the RHS
with something like (1 4+ O(1))(R(f) — infger Re(g)). We
can use Rademacher techniques for this.

P In the case of ordinary least squares, using matrix concentration
(to say the pseudoinverse and thus the ordinary least squares
estimator are similar on the training set and on the distribution)
we can get optimal rates; see John Duchi’s lecture notes for a
nice treatment of at least the lower bound.

» We can use variance-sensitive versions of Hoeffding (namely,
Bernstein's inequality) to prove classification generalization for
fixed functions that have both a 1/y/n and a 1/n term, where
first vanishes as the classification error improves. We can also
use a “relativization” argument to get this for whole function
classes; see the two surveys by Boucheron-Bousquet-Lugosi.

P See also “Talagrand's inequality for empirical processes”.




