
ML Theory Lecture 4

Matus Telgarsky

1 Miscellaneous
• Last time we mentioned decision lists — decision trees where all internal nodes form a single path. We

haven’t discussed learning algorithms yet, but as a cautionary note: while decision lists can be learned
in polynomial time when there exists a decision list consistent with a data set (meaning it labels the
data perfectly), when there is no such perfect decision list, the problem is NP-hard.

2 Box representation: 3 layer ReLU networks
A simple model of neural networks is functions of the form

x 7→ σL(ALσL−1(AL−1 · · · σ1(A1x + b1) · · · + bL−1) + bL),

where weights and biases ((Ai , bi))ni�1 are the parameters found during training, and (σ1 , . . . , σL) are fixed
nonlinearities (they are not modified during training).
Remark 2.1. Some conventions.

• Old choice for σi is coordinate-wise it applies r 7→ 1[r ≥ 0] or r 7→ 1/1+exp(−r).

• Contemporary choice is Lipschitz and continuous. E.g., either coordinate-wise ReLU r 7→ max{0, r}, or
max-pooling, which replaces groups of coordinates with their maximum [picture dawn in class].
AFAIK: popularized by ImageNet paper; ReLU might be fundamental to resurgence?

• σL typically identity (or softmax, which equivalently can be included in the (cross entropy) loss).

• Ai really is just a linear operator. It may be written in a funny way though (e.g., convnet).

• Sometimes we’ll drop bi for convenience; maybe have hwk question on this.

• Can also be interpreted as a graph/network. [Picture drawn in class; “layers” defined, layer 0.]

• Obvious nice property: easy to adapt to complicated input/output domains.

• Real question (“non-mathematical”): why is this the function class that’s taking over? Not just a
representation question.

^

Theorem 2.2. Consider standard 3 layer ReLU networks, meaning σL(r) � r (last layer has no nonlinearity),
whereas other nodes use the ReLU nonlinearity r 7→ max{0, r}. Then for every continuous function 1 and
every ε > 0, there exists a function f written as a 3 layer ReLU network such that ‖ f − 1‖1 ≤ ε.

Remark 2.3. Next lecturewe’ll strengthen this result in variousways: we’ll use ‖ · ‖u not ‖ · ‖1, we’ll allowmany
choices of σ, and we’ll use only 2 layers. But the proof will be nonconstructive and unenlightening. . . ^

1

To prove Theorem 2.2, we’ll use the following lemma.

Lemma 2.4. Suppose a function class F is given such that for any rectangle R and τ > 0, there exists 1 ∈ F
with ‖1 − 1R‖1 ≤ τ. Then for every continuous function f and ε > 0, there exists h ∈ span(F) with
‖ f − h‖1 ≤ ε.

Remark 2.5. We’re going to use this lemma only for 3 layer networks, but it applies to any class of functions
that can approximate “bumps” (and linear combinations thereof). ^

Proof. Applying the piecewise constant approximation lemma from last lecture, let (R1 , . . . , RN) be a partition
of [0, 1]d and h0 �

∑N
i�1 αi1Ri be a piecewise constant function so that ‖h0 − f ‖u ≤ ε/2. Define A :�

∑
i |αi |; if

A � 0, then h � 0 ∈ span(F) satisfies

‖h − f ‖1 � ‖h0 − f ‖1 �

∫
[0,1]d
|h0(x) − f (x)| dx ≤

∫
[0,1]d
‖h0 − f ‖u dx ≤ ε2 ,

therefore suppose A > 0. For each i ∈ {1, . . . ,N}, by the assumption on F , choose 1i so that ‖1i −1Ri ‖1 ≤ ε
2A .

Setting h :�
∑

i αi1i ,

‖h − f ‖1 ≤ ‖h − h0‖1 + ‖h0 − f ‖1

�

∫
[0,1]d

���∑
i

αi1i −
∑

i

αi1Ri

���dx +

∫
[0,1]d

��h0(x) − f (x)
��dx

≤
∫
[0,1]d

∑
i

|αi |
��1i − 1Ri

��dx +

∫
[0,1]d

h0 − f

u dx

≤
∑

i

|αi |
∫
[0,1]d

��1i − 1Ri

��dx +
ε
2 ≤

∑
i

|αi |
(
ε

2A

)
+
ε
2 � ε.

�

Proof of Theorem 2.2. [Proof had tons of pictures in class.]
The proof proceeds in two steps.

1. First we show that for any rectangle R ⊆ [0, 1]d , there exists a network with a single ReLU layer,
meaning a function of the form x 7→ σ(A2σ(A1x + b1) + b2), which approximates 1R in the ‖ · ‖1 norm.

2. By Lemma 2.4, a linear combination of functions of the preceding form approximates continuous
functions. But we can use the last affine combination layer to compute this linear combination, thus
completing the proof.

So let’s suppose a rectangle R :� ×d
i�1[ai , bi] ⊆ [0, 1]d and scalar τ > 0 are given. The idea of the proof is

as follows. It is easy to build an indicator for an interval (univariate rectangle) using a linear combination of
nodes. If we try combining these for each dimension, we don’t get quite what we want, and we need to do
some cleanup with another layer.

In more detail, let δ > 0 be artibrary (we’ll pick a value later), fix a dimension i ∈ {1, . . . , d}, and define

fi(x) :� σ
(

xi − ai

δ
+ 1

)
− σ

(
xi − ai

δ

)
− σ

(
xi − bi

δ

)
+ σ

(
xi − bi − δ

δ

)
.

Thus fi(x) � 1 when xi ∈ [ai , bi], fi(x) � 0 when xi ≤ ai − δ or xi ≥ bi + δ, and for the remaining strips
around [ai , bi], fi linearly interpolates (and thus lies with [0, 1].

To start with the multivariate case, consider what’s wrong with the mapping x 7→ ∑
i fi(x). This is equal

to d within R, but it is large elsewhere. Note however that at least one fi is 0 whenever we are δ away from R
along any axis, and therefore

∑
i fi is at most d − 1 whenever we are at least δ away. Thus define

fR(x) :� σ
((∑

i

fi(x)
)
− (d − 1)

)
.

2

(Picture drawn in R2 in class: without the outer σ, the function
∑

i fi is correct on R, but lots of slop elsewhere;
subtracting (d − 1) and applying a ReLU cleans this up.) Summarizing what we said before,

fR(x)


� 1 x ∈ R,
� 0 infy∈R ‖x − y‖∞ ≥ δ,
∈ [0, 1) otherwise.

Setting si :� bi − ai for convenience,

‖ fR − 1R‖1 ≤ vol
(
×d

i�1[ai − δ, bi + δ] \ ×d
i�1 [ai , bi]

)
� vol

(
×d

i�1[ai − δ, bi + δ]
)
− vol

(
×d

i�1[ai , bi]
)

�

d∏
i�1
(si + 2δ) −

d∏
i�1

si

≤
d∑

i�1

(
d
i

)
(2δ)i �: ?.

This?→ 0 as δ→ 0, there exists δ sufficiently small so that? ≤ τ. �

3 Polynomial fit
[We finished the lecture by introducing polynomial fit and how we will use it. More next time. . .]

References

3

	Miscellaneous
	Box representation: 3 layer ReLU networks
	Polynomial fit

