
ML Theory Lecture 5

Matus Telgarsky

1 Polynomial fit
We’ll use a tool rooted in polynomial approximation to show that RBF SVM and 2 layer networks can fit
continuous functions.
Remark 1.1. As discussed in lecture, this tool is the standard (and shortest) way to prove such results, but it
leaves no intuition about the quality of approximation, how one can construct approximations, etc. ^

Theorem 1.2 (Stone-Weierstrass; cf. (Folland, 1999, Theorem 4.45)). Let a class of functions F be given,
satisfying the following properties.

(1.2.a) Each f ∈ F is continuous.

(1.2.b) For every x, there exists f ∈ F with f (x) , 0.

(1.2.c) F separates points, meaning for every x , y there exists f ∈ F with f (x) , f (y). (Note that if
this property failed, then we could pick some continuous function 1 which differs on x and y, and F
couldn’t hope to approximate it well.)

(1.2.d) F is an algebra, meaning it is closed under multiplication and under vector space operations.

Then for every continuous 1 : Rd → R and ε > 0, there exists f ∈ F with ‖ f − 1‖u ≤ ε.

Remark 1.3 (Sanity checks.). Note that the conditions of the theorem are satisfied for polynomials:

span(prod(
{

x 7→ xi : i ∈ {1, . . . d}
}
)).

Note moreover that the conditions are not satisfied for polynomials of fixed degree; the above display has
all polynomials of all degrees. This is consistent with the Minsky-Papert construction from earlier lectures,
which provided limitations of linear classifiers (degree 1 polynomials).

This theorem says that classes of functions behaving somewhat similarly to polynomials also have
polynomial approximation propeties. ^

Remark 1.4 (Notation.). It is tiresome to always state “for every continuous function f and ε > 0. . . ”. Another
way to state the theorems is: the closure of the function class under ‖ · ‖t u is equal to all continuous functions;
this turns out to be the right topology. For more information, see any standard text, for instance (Folland,
1999). ^

Remark 1.5 (Proofs.).We won’t prove this theorem, but here are some comments on how to do so.

• The original Weierstrass theorem only dealt with polynomial approximation; it was extended by Stone
to the more general form above.
The proof of the Weirstrass theorem which is popular in computer science circles is due to Bernstein:
some n and consider the Bernstein polynomial

x 7→
n∑

i1�0
· · ·

n∑
id�0
1
©­«

d∑
j�1

i je j

n
ª®¬

d∏
j�1

Pr
[
Bin(n , x j) � i j

]
,

1

which is a polynomial since Pr
[
Bin(n , x j) � i j

]
�

(n
i j

)
x

i j

j (1 − x j)n−i j . The proof then uses Chebyshev’s
inequality (or the law of large numbers) to control the polynomials between the nd interpolation points.

• Weierstrass’s original proof considers the mollification x 7→ E(f (x + ξ)), where ξ ∼ N(0, σ2). This
mollified mapping approaches f as σ ↓ 0, and moreover it is analytic so it has a well-behaved Taylor
expansion (a polynomial).

^

Remark 1.6 (Why this set of conditions?). • It makes sense that the third property (separation) is neces-
sary: if there is a pair (x , x′) which can not be distinguished by F (there does not exist f ∈ F with
f (x) , f (x′)), then there is no hope of approximation of even a simple continuous function with
different behavior on x and x′ (e.g., z 7→ 〈z − x , x′ − x〉, which is 0 at x and ‖x − x′‖2 at x′).

• To see how multiplication is useful, recall that for 3 layer networks, we first approximated the function
x 7→ 1[x ∈ ×d

i�1[ai , bi]]. Since 1[x ∈ ×d
i�1[ai , bi]] �

∏d
i�1 1[xi ∈ [ai , bi]], instead of using an extra layer

as last time, we could simply form this product.
^

1.1 A convenient lemma
Define a class of single neural network nodes:

Hσ :�
{
x 7→ σ(a>x + b) : a ∈ Rd , b ∈ R

}
.

Lemma 1.7. For every continuous f : Rd → R and ε > 0, there exists 1 ∈ Hexp with ‖ f − 1‖u ≤ ε.

[I got the idea for this proof from (Steinwart and Christmann, 2008, Chapter 4).]

Proof. (1.2.a) is direct, and (1.2.b) holds by picking x 7→ exp(〈0, x〉) (indeed the elements ofHexp are strictly
positive, we can pack any one).

Now consider (1.2.c). We want to showHexp can separate points; intuitively this is easy, we just put an
exp along the line between a given x , y. That is, define h(z) :� exp(

〈
x − y , z

〉
), and note

h(y)
h(x) �

exp(
〈
x , y

〉
) exp(−

〈
y , y

〉
)

exp(〈x , x〉) exp(−
〈
x , y

〉
)
� exp(−‖x − y‖2),

which is not 1 since ‖x − y‖ , 0, and thus h(y) , h(x).
For (1.2.d), vector space operations are satisfied for free since we are working with span(Hexp) and not

Hexp. For multiplication, note

©­«
N∑

i�1
αi exp(〈xi , z〉)

ª®¬ ©­«
M∑
j�1

β j exp(
〈

yi , z
〉
)ª®¬ �

N∑
i�1

M∑
j�1

αiβ j exp(
〈
xi + yi , z

〉
) ∈ span(Hexp).

�

For the rest of the lecture, we’ll use Lemma 1.7 and not Theorem 1.2.
Remark 1.8.When invoking Lemma 1.7, we’ll leave out the offset term “+b” within each neural network
node; this is because we can pull exp(b) into the linear combination coefficient by properties of exp. This is
not the case for general activations. . . ^

2

1.2 2 layer networks

Theorem 1.9 ((Hornik et al., 1989) and others). Let any continuous nondecreasing σ : R→ R be given
with

lim
z→−∞

σ(z) � 0, lim
z→+∞

σ(z) � 1.

For any continuous 1 and ε > 0, there exists f ∈ span(Hσ) with ‖ f − 1‖u ≤ ε.

Proof sketch. There are many ways to prove it. One, based on (Hornik et al., 1989), is as follows.

1. Pick some univariate φ so that span(Hφ) does what we want (e.g., by Lemma 1.7, we could use φ � exp;
the proof by Hornik et al. (1989) used φ � cos).

2. Now argue that φ can be approximated byHσ, and that this completes the proof.

The homework will fill in the gaps of this proof scheme. �

Remark 1.10. Now that we’ve seen both the 2- and 3-layer proofs, note that the 2-layer proof gives no sense
of how to construct an approximating networks, whereas the 3-layer proof does. . . ^

Remark 1.11. The proof doesn’t apply to the ReLU as stated, but there are a few ways to extend it to handle
the ReLU (e.g., this is done in the homework). ^

1.3 RBF SVM
Lastly, consider the functions constructed by RBF SVMs (radial basis function support vector machines). First
define (for γ > 0)

Rγ :�
{
x 7→ exp(−γ‖x − β‖ : β ∈ Rd

}
;

RBF SVMs work with elements of span(Rγ).

Theorem 1.12. Given any continuous f and ε > 0 and γ > 0, there exists 1 ∈ span(Rγ) with ‖ f − 1‖u ≤ ε.

Proof. [Proof again using ideas from (Steinwart and Christmann, 2008, Chapter 4).]
By Lemma 1.7, there exists

1 �

∑
i

αi exp(
〈
·, βi

〉
) with ‖1 − f eγ‖·‖

2 ‖u ≤ ε.

Define
β̃i :� β/(2γ), α̃i :� αi exp(γ‖ β̃i ‖2), 1̃ �

∑
i

α̃i exp
(
−γ‖ · −β̃i ‖2

)
∈ span(Sγ).

For any x ∈ [0, 1]d ,

1̃(x) �
∑

i

α̃i exp
(
−γ‖x − β̃i ‖2

)
�

∑
i

αi eγ‖ β̃i ‖2 exp
(
−γ‖x‖2 + 2γ

〈
x , β̃i

〉
− γ‖ β̃i ‖2

)
� e−γ‖x‖

2
∑

i

αi exp
(
2γ

〈
x , β̃i

〉)
� e−γ‖x‖

2
1(x),

3

thus

|1̃(x) − f (x)| � e−γ‖x‖
2
���1̃(x)eγ‖x‖2 − f (x)eγ‖x‖2

��� � e−γ‖x‖
2
���1(x) − f (x)eγ‖x‖2

��� ≤ ε.
�

Remark 1.13. As you can see, it is fairly commonwithinmachine learning that our predictors can approximate
arbitrary continuous functions, indeed even using the same proof (that is, Lemma 1.7). ^

2 Succinct
To close, we briefly discussed succinct representations: here the goal is to argue that certain interesting
functions can be efficiently approximated by some classes of predictors.

As an initial example (further explored in homework), consider branching programs: decision trees where
nodes in the same layer can share children.

Consider the function x 7→ 1
d
∑d

i�1 xi over {0, 1}d . A branching program can be constructed with the
following form:

• The first layer has a single node with predicate 1[x1 ≥ 1/2].

• Thereafter, layer i + 1 has i + 1 nodes, each with predicate 1[xi ≥ 1/2, and connected to their left and
right parents (drawing the tree in two dimensions).

The branching program operates by tracking the number of bits seen so far: if node j ≤ i of layer i is reached,
that means j coordinates are equal to 1 so far. (Counting from 0.)

This branching program has size O(d2). In the homework, we’ll verify that every decision tree for this
problem has size at least 2d .

References
Gerald B. Folland. Real analysis: modern techniques and their applications. Wiley Interscience, 2 edition, 1999.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators.
Neural Networks, 2(5):359–366, july 1989.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, 1 edition, 2008.

4

	Polynomial fit
	A convenient lemma
	2 layer networks
	RBF SVM

	Succinct

