ML Theory Lecture 6 - Succinct Representations 1

Matus Telgarsky

1 Miscellanea

- Hwk1 out tonight. Policy different than Hwk0: everyone still needs their own writeup, but can talk with up to three others.

This lecture we will start on succinct representations: the goal in this and the following lectures is to show that there are situations where a deep network can approximate a function much more efficiently than a shallow network.

2 Tent maps and fractional parts

Define the fractional part $\langle x\rangle:=x-\lfloor x\rfloor$.

Figure 1: $\langle x\rangle$ along $[0,4)$.
This is a hard function. Consider for instance polynomial approximation.

- Of course, $\langle x\rangle$ is discontinuous, so we have to give up on $\|\cdot\|_{\mathrm{u}}$.
- Worse, consider $x \mapsto\langle x\rangle-1 / 2$. On any interval [0, n), this function has n crossings of 0 . Therefore it degree at least n and at least n terms.

Don't underestimate this modest function. It can be found within all high-depth lower bounds for neural networks (both representation and VC bounds).

2.1 Tent maps

We can't represent $\langle x\rangle$ with ReLUs because it is discontinuous. But it turns out we can get really close. . .
Let us look at a function studied by Ulam and von Neumann (1947):

$$
p(x):=4 x(1-x)
$$

These functions are heavily studied in the dynamical systems literature. Here is another one, which we can represent with the ReLU.

$$
\Delta(x):=\sigma_{\mathrm{r}}\left(2 \sigma_{\mathrm{r}}(x)-4 \sigma_{\mathrm{r}}(x-1 / 2)\right)= \begin{cases}2 x & x \in[0,1 / 2] \\ 2(1-x) & x \in(1 / 2,1] \\ 0 & \text { otherwise }\end{cases}
$$

The dynamical systems literature tells us p and Δ are "topologically equivalent". But at this point we must break from that literature, it doesn't seem to give us the lemmas we want. . .

Why are we studying tent maps? They quickly grow in complexity. Indeed, we will show:

- Δ^{k} has 2^{k-1} peaks; it consists of 2^{k-1} copies of Δ, each of width $2^{1-k} . \Delta^{k}$ is "complex".
- Moreover, while Δ^{k} itself is a ReLU network with $O(k)$ layers, edges, and nodes, it is hard to approximate with shallow networks.

Let us begin making these claims rigorous.

Theorem 2.1. For any $x \in[0,1]$ and any $k \geq 1$,

$$
\Delta^{k}(x)=\Delta\left(\left\langle 2^{k-1} x\right\rangle\right)
$$

Remark 2.2. Even though $x \mapsto\left\langle 2^{k-1} x\right\rangle$ is hard to approximate, Δ^{k} embeds it inside Δ (!). Later we will see how to use Δ to embed $\left\langle 2^{k-1} x\right\rangle$ within other functions as well (!!!).
Remark 2.3. (Geometric description and proof.) [Many pictures drawn in class.] Let's return to a geometric view of Theorem 2.1. Δ^{k} is 2^{k-1} smushed copies of Δ. Let's reason about this by induction. Write $\Delta^{i+1}=\Delta^{i} \circ \Delta$. Along [$0,1 / 2$], this is the function $x \mapsto \Delta^{i}(2 x)$, meaning it is like Δ^{i} but it is squished to fit in $[0,1 / 2]$. Similarly, along ($1 / 2,1$],

$$
\Delta^{i+1}=\Delta^{i} \circ \Delta=\left(x \mapsto \Delta^{i}(2(1-x))\right)=\left(x \mapsto \Delta^{i}(2 x-1)\right)
$$

the last bit since Δ^{i} is symmetric about $1 / 2$, meaning $\Delta^{i}(1-z)=\Delta^{i}(z)$ (in this case with $z=2 x-1$). But $2 x-1$ applied to $(1 / 2,1]$ gives $(0,1]$, so once again we get a full copy of Δ^{i}, squished to half width.

We can also develop a geometric picture while peeling the induction the other way. That is, write $\Delta^{i+1}=\Delta \circ \Delta^{i}$. By the inductive hypothesis, Δ^{i} is 2^{i-1} copies of Δ. Applying Δ to this will double the image of
Δ^{i} when it is within $[0,1 / 2)$, and otherwise it will double it and subtract it from 2 ; equivalently, this operation replaces Δ^{i} with $2 \Delta^{i}$, and then "folds downward" the part that exceeds 1 .

Proof. The proof is by induction on k; crucially it establishes that the claim holds for all $x \in[0,1]$ at each level; a single fixed x is not assumed throughout.

When $k=1, x \in[0,1)$ implies $\langle x\rangle=x$ thus $\Delta^{1}(x)=\Delta^{1}(\langle x\rangle)$, whereas $x=1$ means $\Delta^{1}(x)=0=\Delta^{1}(0)=$ $\Delta^{1}(\langle x\rangle)$.

Now suppose the claim holds for some $k \geq 1$, and needs to be shown for $k+1$. Let $x \in[0,1]$ be given; there are two cases to consider.

- If $x<1 / 2$, then $2 x \in[0,1]$, meaning $\Delta^{k}(2 x)=\Delta\left(\left\langle 2^{k} \cdot 2 x\right\rangle\right)$, thus

$$
\Delta^{k+1}(x)=\Delta^{k}(\Delta(x))=\Delta^{k}(2 x)=\Delta(\langle 2 x\rangle)=\Delta\left(\left\langle 2^{k} \cdot 2 x\right\rangle\right)=\Delta\left(\left\langle 2^{k+1} x\right\rangle\right)
$$

- Otherwise $x \geq 1 / 2$, whereby $2 x-1 \in[0,1]$ and so $\Delta^{k}(2 x-1)=\Delta\left(\left\langle 2^{k}(2 x-1)\right\rangle\right)=\Delta\left(\left\langle 2^{k+1} x\right\rangle\right)$. Furthermore, since Δ is symmetric about $1 / 2$, meaning $\Delta(1-y)=\Delta(y)$ for $y \in[0,1]$, then together

$$
\Delta^{k+1}(x)=\Delta^{k}(\Delta(x))=\Delta^{k}(2(1-x))=\Delta^{k-1}(\Delta(1-(2 x-1)))=\Delta^{k-1}(\Delta(2 x-1))=\Delta^{k}(2 x-1)=\Delta\left(\left\langle 2^{k+1} x\right\rangle\right)
$$

Remark 2.4. Note that we already have some evidence that Δ^{k} is painful to approximate with shallow things. For instance, when fitting continuous functions with linear combinations of things, it seems we needed another linear combination term for each "bump". But Δ^{k} has 2^{k-1} bumps. . .

2.2 "Applications" of tent maps

[I didn't get to cover this (except multiplication). Maybe we'll have time to return to it. . .]
Let's consider a few nice things we can do with tent maps.

- Multiplication. Next lecture we'll show how to implement $(x, y) \mapsto x y$. This is important since it can be used to approximate smooth functions and polynomials.
- Parity. Consider the boolean hypercube, $x \in\{-1,+1\}^{d}$, and suppose $d=2^{k}$ for some positive integer k (for simplicity). Then, by direct inspection,

$$
\operatorname{parity}(x)=\prod_{i=1}^{d} x_{i}=\Delta^{k-1}\left(\frac{d+\sum_{i=1}^{d} x_{i}}{2 d}\right) .
$$

Of note here is the following size comparison.

- Written as a ReLU network, we need $O(\ln (d))$ nodes and $O(d)$ wires.
- A branching program was shown a few lectures ago to need $O\left(d^{2}\right)$ nodes and wires.
- On the other hand, axis-aligned decision trees were shown to need $\Omega\left(2^{d}\right)$ leaves; indeed, they needed a path through the tree for every boolean sequence.
- Replication of symmetric signals. Consider a function $\phi:[0,1] \rightarrow \mathbb{R}$ which is symmetric about $1 / 2$, meaning again that $\phi(x)=\phi(1-x)$. Then

$$
\phi\left(\Delta^{k}(x)\right)=\phi\left(\left\langle 2^{k}(x)\right\rangle\right) .
$$

There are two things of note here: (a) we are getting 2^{k} copies of ϕ with only $O(k)$ added nodes in the network, (b) we are using Δ^{k} to embed $\left\langle 2^{k} x\right\rangle$ into another function, despite $\left\langle 2^{k} x\right\rangle$ being painful! [In class, a picture was drawn where each affine piece of Δ^{k} is replaced with ϕ.]
As an example of when this replication property is nice, if ϕ is a discontinuous bump, then $\phi\left(\Delta^{k}(x-\right.$ $\left.2^{-k-1}\right)$) performs digit extraction. [pictures drawn in class.]

3 Complexity of piecewise affine functions

In the next lecture we will prove that shallow networks can not approximate Δ^{k} (unless they are very wide). So far we have constructed a "complex" function in many layers, Δ^{k}. It still remains to argue that shallow functions are "not complex", and that this gap in complexity implies a gap in approximation.

We will focus on ReLU networks. Note that the function computed by any ReLU network is piecewise affine; thus a natural notion of complexity is simply the number of pieces.
Definition 3.1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is piecewise affine if \mathbb{R} can be divided into finitely many intervals (1 or 2 of which might be unbounded) such that f is a fixed affine function along each interval. Let $N_{\mathrm{A}}(f)$ denote the smallest possible number of intervals such that along any interval f is a fixed affine function (with $N_{\mathrm{A}}(f)=\infty$ if this is not possible), and let P_{A} be any set of pieces with $N_{\mathrm{A}}(f)=\left|P_{\mathrm{A}}(f)\right|$ (in general $P_{\mathrm{A}}(f)$ is not unique (consider boundaries), but it won't matter to us).
(The definition can be generalized to multivariate functions, but we won't need it.)
For example, the ReLU σ_{r} satisfies

$$
P_{\mathrm{A}}\left(\sigma_{\mathrm{r}}\right)=P_{\mathrm{A}}\left(\sigma_{\mathrm{r}}\right)=\left\{\mathbb{R}_{<0}, \mathbb{R}_{\geq 0}\right\} \text { or }\left\{\mathbb{R}_{\leq 0}, \mathbb{R}_{>0}\right\}, \quad N_{\mathrm{A}}\left(\sigma_{\mathrm{r}}\right)=\left|P_{\mathrm{A}}\left(\sigma_{\mathrm{r}}\right)\right|=2
$$

The following lemma will be used to establish an upper bound on N_{A} of univariate ReLU networks.

Lemma 3.2. Let univariate functions $f, g,\left(g_{1}, \ldots, g_{t}\right)$ and scalars $\left(a_{1}, \ldots, a_{t}, b\right)$ be given.

1. $N_{\mathrm{A}}(f+g) \leq N_{\mathrm{A}}(f)+N_{\mathrm{A}}(g)$.
2. $N_{\mathrm{A}}\left(\sum_{i} a_{i} g_{i}+b\right) \leq \sum_{i} N_{\mathrm{A}}\left(g_{i}\right)$.
3. $N_{\mathrm{A}}(f \circ g) \leq N_{\mathrm{A}}(f) \cdot N_{\mathrm{A}}(g)$.
4. $N_{\mathrm{A}}\left(x \mapsto f\left(\sum_{i} a_{i} g_{i}(x)+b\right)\right) \leq N_{\mathrm{A}}(f) \cdot \sum_{i} N_{\mathrm{A}}\left(g_{i}\right)$.

Note that the last piece of the lemma gives a bound on N_{A} for a single node of a network. The next lecture will apply this inductively to get a bound for full networks.
Proof. [Somewhat informal; geometric intuition stressed; lots of pictures drawn in class.]

1. Draw f and g and also vertical bars at the boundaries of the pieces of each. between any two adjacent bars, f and g are each a fixed affine function, and thus sum to a fixed affine function. There are less than $N_{\mathrm{A}}(f)+N_{\mathrm{A}}(g)$ vertical bars (e.g., this is clear if we process intervals in sorted order), so we are done.
2. Since $N_{\mathrm{A}}\left(a_{i} g_{i}\right) \leq N_{\mathrm{A}}\left(g_{i}\right)$ (inequality can be strict when $a_{i}=0$) and since $N_{\mathrm{A}}\left(g_{1}+b\right)=N_{\mathrm{A}}\left(g_{1}\right)$, it suffices to consider $N_{\mathrm{A}}\left(\sum_{i} g_{i}\right)$, which is at most $\sum_{i} N_{\mathrm{A}}\left(g_{i}\right)$ by applying the previous part inductively.
3. Fix any interval $U \in P_{\mathrm{A}}(g)$. Since g is affine, then $g(U)$ is also an interval. Now turning to f, f is necessarily piecewise affine along the interval $g(U)$, in particular f along the interval $g(U)$ must still be piecewise affine with at most $N_{\mathrm{A}}(f)$ pieces. Therefore

$$
N_{\mathrm{A}}(f \circ g) \leq \sum_{U \in P_{\mathrm{A}}(g)} N_{\mathrm{A}}(f)=N_{\mathrm{A}}(g) \cdot N_{\mathrm{A}}(f)
$$

4. This follows by combining the last two parts.

References

Stanislaw Ulam and John von Neumann. On combination of stochastic and deterministic processes. Bulletin of the American Mathematical Society, 53:1120, 1947.

