
ML Theory Lecture 6 — Succinct Representations 1

Matus Telgarsky

1 Miscellanea
• Hwk1 out tonight. Policy different than Hwk0: everyone still needs their own writeup, but can talk

with up to three others.

This lecture we will start on succinct representations: the goal in this and the following lectures is to show
that there are situations where a deep network can approximate a function much more efficiently than a
shallow network.

2 Tent maps and fractional parts
Define the fractional part 〈x〉 :� x − bxc.

Figure 1: 〈x〉 along [0, 4).

This is a hard function. Consider for instance polynomial approximation.

• Of course, 〈x〉 is discontinuous, so we have to give up on ‖ · ‖u.

• Worse, consider x 7→ 〈x〉 − 1/2. On any interval [0, n), this function has n crossings of 0. Therefore it
degree at least n and at least n terms.

Don’t underestimate this modest function. It can be found within all high-depth lower bounds for
neural networks (both representation and VC bounds).

2.1 Tent maps
We can’t represent 〈x〉 with ReLUs because it is discontinuous. But it turns out we can get really close. . .

Let us look at a function studied by Ulam and von Neumann (1947):

p(x) :� 4x(1 − x).

These functions are heavily studied in the dynamical systems literature. Here is another one, which we
can represent with the ReLU.

∆(x) :� σr(2σr(x) − 4σr(x − 1/2)) �

2x x ∈ [0, 1/2],
2(1 − x) x ∈ (1/2, 1],
0 otherwise.

1

1

0 1

(a) p.

1

0 1

(b) p2 � p ◦ p.

1

0 1

(a) ∆.

1

0 1

(b) ∆2 � ∆ ◦ ∆.

The dynamical systems literature tells us p and ∆ are “topologically equivalent”. But at this point we
must break from that literature, it doesn’t seem to give us the lemmas we want. . .

Why are we studying tent maps? They quickly grow in complexity. Indeed, we will show:

• ∆k has 2k−1 peaks; it consists of 2k−1 copies of ∆, each of width 21−k . ∆k is “complex”.

• Moreover, while∆k itself is a ReLU networkwithO(k) layers, edges, and nodes, it is hard to approximate
with shallow networks.

Let us begin making these claims rigorous.

Theorem 2.1. For any x ∈ [0, 1] and any k ≥ 1,

∆k(x) � ∆
(〈

2k−1x
〉)
.

Remark 2.2. Even though x 7→
〈
2k−1x

〉
is hard to approximate, ∆k embeds it inside ∆ (!). Later we will see

how to use ∆ to embed
〈
2k−1x

〉
within other functions as well (!!!). ^

Remark 2.3. (Geometric description and proof.) [Many pictures drawn in class.] Let’s return to a geometric
view of Theorem 2.1: ∆k is 2k−1 smushed copies of∆. Let’s reason about this by induction. Write∆i+1 � ∆i ◦∆.
Along [0, 1/2], this is the function x 7→ ∆i(2x), meaning it is like∆i but it is squished to fit in [0, 1/2]. Similarly,
along (1/2, 1],

∆i+1
� ∆i ◦ ∆ �

(
x 7→ ∆i(2(1 − x))

)
�

(
x 7→ ∆i(2x − 1)

)
,

the last bit since ∆i is symmetric about 1/2, meaning ∆i(1 − z) � ∆i(z) (in this case with z � 2x − 1). But
2x − 1 applied to (1/2, 1] gives (0, 1], so once again we get a full copy of ∆i , squished to half width.

We can also develop a geometric picture while peeling the induction the other way. That is, write
∆i+1 � ∆ ◦∆i . By the inductive hypothesis, ∆i is 2i−1 copies of ∆. Applying ∆ to this will double the image of

2

∆i when it is within [0, 1/2), and otherwise it will double it and subtract it from 2; equivalently, this operation
replaces ∆i with 2∆i , and then “folds downward” the part that exceeds 1. ^

Proof. The proof is by induction on k; crucially it establishes that the claim holds for all x ∈ [0, 1] at each
level; a single fixed x is not assumed throughout.

When k � 1, x ∈ [0, 1) implies 〈x〉 � x thus ∆1(x) � ∆1(〈x〉), whereas x � 1 means ∆1(x) � 0 � ∆1(0) �
∆1(〈x〉).

Now suppose the claim holds for some k ≥ 1, and needs to be shown for k + 1. Let x ∈ [0, 1] be given;
there are two cases to consider.

• If x < 1/2, then 2x ∈ [0, 1], meaning ∆k(2x) � ∆(
〈
2k · 2x

〉
), thus

∆k+1(x) � ∆k(∆(x)) � ∆k(2x) � ∆(〈2x〉) � ∆(
〈
2k · 2x

〉
) � ∆(

〈
2k+1x

〉
).

• Otherwise x ≥ 1/2, whereby 2x − 1 ∈ [0, 1] and so ∆k(2x − 1) � ∆(
〈
2k(2x − 1)

〉
) � ∆(

〈
2k+1x

〉
).

Furthermore, since ∆ is symmetric about 1/2, meaning ∆(1 − y) � ∆(y) for y ∈ [0, 1], then together

∆k+1(x) � ∆k(∆(x)) � ∆k(2(1− x)) � ∆k−1(∆(1− (2x − 1))) � ∆k−1(∆(2x − 1)) � ∆k(2x − 1) � ∆(
〈
2k+1x

〉
).

�

Remark 2.4. Note that we already have some evidence that ∆k is painful to approximate with shallow things.
For instance, when fitting continuous functions with linear combinations of things, it seems we needed
another linear combination term for each “bump”. But ∆k has 2k−1 bumps. . . ^

2.2 “Applications” of tent maps
[I didn’t get to cover this (except multiplication). Maybe we’ll have time to return to it. . .]

Let’s consider a few nice things we can do with tent maps.

• Multiplication. Next lecture we’ll show how to implement (x , y) 7→ x y. This is important since it can
be used to approximate smooth functions and polynomials.

• Parity. Consider the boolean hypercube, x ∈ {−1,+1}d , and suppose d � 2k for some positive integer k
(for simplicity). Then, by direct inspection,

parity(x) �
d∏

i�1
xi � ∆

k−1

(
d +

∑d
i�1 xi

2d

)
.

Of note here is the following size comparison.

– Written as a ReLU network, we need O(ln(d)) nodes and O(d)wires.
– A branching program was shown a few lectures ago to need O(d2) nodes and wires.
– On the other hand, axis-aligned decision trees were shown to need Ω(2d) leaves; indeed, they
needed a path through the tree for every boolean sequence.

• Replication of symmetric signals. Consider a function φ : [0, 1] → Rwhich is symmetric about 1/2,
meaning again that φ(x) � φ(1 − x). Then

φ(∆k(x)) � φ(
〈
2k(x)

〉
).

There are two things of note here: (a) we are getting 2k copies of φ with only O(k) added nodes in the
network, (b) we are using ∆k to embed

〈
2k x

〉
into another function, despite

〈
2k x

〉
being painful! [In

class, a picture was drawn where each affine piece of ∆k is replaced with φ.]
As an example of when this replication property is nice, if φ is a discontinuous bump, then φ(∆k(x −
2−k−1)) performs digit extraction. [pictures drawn in class.]

3

3 Complexity of piecewise affine functions
In the next lecture we will prove that shallow networks can not approximate ∆k (unless they are very wide).
So far we have constructed a “complex” function in many layers, ∆k . It still remains to argue that shallow
functions are “not complex”, and that this gap in complexity implies a gap in approximation.

We will focus on ReLU networks. Note that the function computed by any ReLU network is piecewise
affine; thus a natural notion of complexity is simply the number of pieces.
Definition 3.1. A function f : R → R is piecewise affine if R can be divided into finitely many intervals (1
or 2 of which might be unbounded) such that f is a fixed affine function along each interval. Let NA(f)
denote the smallest possible number of intervals such that along any interval f is a fixed affine function (with
NA(f) � ∞ if this is not possible), and let PA be any set of pieces with NA(f) � |PA(f)| (in general PA(f) is
not unique (consider boundaries), but it won’t matter to us).

(The definition can be generalized to multivariate functions, but we won’t need it.) ^

For example, the ReLU σr satisfies

PA(σr) � PA(σr) � {R<0 ,R≥0} or {R≤0 ,R>0} , NA(σr) � |PA(σr)| � 2.

The following lemma will be used to establish an upper bound on NA of univariate ReLU networks.

Lemma 3.2. Let univariate functions f , 1 , (11 , . . . , 1t) and scalars (a1 , . . . , at , b) be given.

1. NA(f + 1) ≤ NA(f) + NA(1).

2. NA(
∑

i ai1i + b) ≤ ∑
i NA(1i).

3. NA(f ◦ 1) ≤ NA(f) · NA(1).

4. NA(x 7→ f (∑i ai1i(x) + b)) ≤ NA(f) ·
∑

i NA(1i).

Note that the last piece of the lemma gives a bound on NA for a single node of a network. The next lecture
will apply this inductively to get a bound for full networks.

Proof. [Somewhat informal; geometric intuition stressed; lots of pictures drawn in class.]

1. Draw f and 1 and also vertical bars at the boundaries of the pieces of each. between any two adjacent
bars, f and 1 are each a fixed affine function, and thus sum to a fixed affine function. There are less than
NA(f) + NA(1) vertical bars (e.g., this is clear if we process intervals in sorted order), so we are done.

2. Since NA(ai1i) ≤ NA(1i) (inequality can be strict when ai � 0) and since NA(11 + b) � NA(11), it suffices
to consider NA(

∑
i 1i), which is at most

∑
i NA(1i) by applying the previous part inductively.

3. Fix any interval U ∈ PA(1). Since 1 is affine, then 1(U) is also an interval. Now turning to f , f is
necessarily piecewise affine along the interval 1(U), in particular f along the interval 1(U)must still be
piecewise affine with at most NA(f) pieces. Therefore

NA(f ◦ 1) ≤
∑

U∈PA(1)
NA(f) � NA(1) · NA(f).

4. This follows by combining the last two parts.

�

References
Stanislaw Ulam and John von Neumann. On combination of stochastic and deterministic processes. Bulletin
of the American Mathematical Society, 53:1120, 1947.

4

	Miscellanea
	Tent maps and fractional parts
	Tent maps
	``Applications'' of tent maps

	Complexity of piecewise affine functions

