ML Theory Lecture 7

Matus Telgarsky

1 Depth hierarchy theorem for neural nets

Recall that a function f is piecewise affine when there exists a partition of R into intervals so that f is affine
within each pieces; let Na(f) denote the minimum number of pieces in this partition (possibly Na(f) = o),
and let P4(f) be some partition with Na(f) = |Pa(f)| (note that P4(f) is not unique).

We concluded last lecture with a 4 part lemma, the key part of which was an upper bound on the number

of affine pieces in a single neural network node.

Lemma 1.1. Let univariate functions f,g,(g1, ..., gt) and scalars (a1, ..., a;, b) be given. Then

Na (x5 F() 2igi(x) + b)) < Na(f)- 3 Na(gy)

Invoking this lemma inductively gives a bound on N4(f) where f : R — R is a neural net.

Theorem 1.2. Let f : R — R be the function computed by a neural network with L layers, every activation o
satisfies Na(o) < t, and layer i has N; nodes, with N := }}; N; for convenience. The following bounds hold.

1. Consider any node in layer i, and let g : R — R denote the computation of this node as a function of the
network input. Then Na(g) < t' [1;<; Nj.

L
tN
2. Na(f) < (T) .
Remark 1.3. * We will establish this bound via elementary means; in the more general case of multivariate

inputs, VC arguments can be adapted to give similar bounds.

* As a sanity check, let’s consider N4 (AF). We know that AF js 2k-1 copies of A, meaning along [0, 1] it
consists of 2k distinct affine functions. Account for the behavior outside this interval,

Na(AF) =2 42K,

Let’s also prove it via the preceding theorem. The construction uses 2k layers and 3k nodes, and
moreover Ny (oy) = 2, thus
2. 3k)2k _ gt

Na(f) < (7

Upon further inspection, the A* construction can remove the layers with single nodes and make use of
k + 1 layers, giving the tighter estimate 6+'.

We are also losing some factors because we didn't require piecewise affine functions to be continuous.

Taking all this together, A is pretty efficient at meeting the bound. This is essential because we want
N4 to be a measure of complexity of neural networks which is small for shallow networks and not only
large but also roughly tight for A.

o

Proof. First note that the second claim follows from the first. Indeed, the output node, as a function of the
input, computes f, thus Ny = 1 implies
Na(f) < tk 1_[Nj.
j<i
The bound follows by considering the worse case for [];.; Nj; this can be bounded in various ways, one
being Jensen’s inequality:

an :epolan :exp%ZLlan < exlenZ% _ (%)L

j<L j<L j<L j<L

This bound is almost attained by making all nodes by making all layers have the same number of nodes (and
this solution can be grinded out via the Lagrangian); it’s only “almost” because Ny, = 1.

Let’s turn to proving the first part via induction on layers. The induction will use the simplifying trick of
starting from layer 0, the first input; for this reason, define Ny := 1, which does not change the product term
[1 j<i N j

For that base case, there is nothing to show; the input is an affine function of the input (identity mapping),
thus the number of piecesis 1 = °] j<o Nj.

For the inductive step, suppose the nodes in layer i, treated as functions of the network input, compute
(91, gn,) with

Na(g)) < t']_[Nj.
j<i
Now consider any node in layer i + 1, and let g denote its output as a function of the network, and let o
denote its activation. Combining the preceding inductive hypothesis with Lemma

N; N;
Na(9) < Nao) Y Na(gp <t Y [[Ny < e [| ;.
=

=1 j<i j<i+l
O

Combining this estimate with the structure of AF from the last lecture gives the following separation
result (called a “depth hierarchy theorem” in TCS).

Theorem 1.4 (Telgarsky| (2015, 2016)). Let any integer k > 2 be given. Then the function AR*¥3 can be
represented as a ReLU network with 3k* + 9 total nodes and 2k* + 6, however any function f represented as a
ReLU network with < 2% nodes and < k layers can not approximate it in Ly:

oo, = - seefoe= 5

Remark 1.5. * Note that result has various inefficiences: we want to compare k-layered functions to
(k + 1)-layered functions rather than (2k? + 6)-layered functions; 1/32 should be 1/2 — 0(1); we only
exhibited one hard function, rather than many, or discussing natural functions (for instance as found by
sgd); the bound has only combinatorial quantities and no sensitivity to weight magnitudes.

* The proof will use N4 to essentially count oscillations, however just as in Homework 0, this will not
suffice: we will need the regularity of AR5 oscillations.

e We preferred || - ||u for upper bounds, but for lower bounds || - ||1 is better; it tells us that we can't get
close to the target function for a decent fraction of the space.

e It is essential that the right hand side is a constant, independent of k.
<&

Proof. The lemma in the last lecture established that AF*+3 consists of k2 + 2 copies of A, uniformly squeezed
to fit within [0, 1]; this written compactly as

Ak2+3(x) - A (<2k2+2x>))

On the other hand, suppose f has < 2f nodes and L < k layers; Theoremtells us

L k
Na(f) < (2 'sz) < (2 'kzk) <2¥,

where the substitution of L with k is due to L = k maximizing the expression, for instance as can be

determined by differentiating. Let’s put everything we just established into a single plot of AF+3 and f.

1_

This plot has some parts shaded in. Recall that our goal is to lower bound the L; distance between f and
K2+3 : .
A"+, Inspecting the plot, a lower bound can be constructed as follows:

¢ Subdivide [0, 1] into regions according to f being either above or below 1/2.

® Let’s split AR*+3 by x + 1/2, obtaining K43 _q triangles (we lose one at the boundaries).

* Whenever f is above 1/2, we can count the triangles below 1/2; analogously, when f is below 1/2,
count the triangles above 1/2.

* By construction, the total area in these triangles lower bounds the L, distance.

In order to count these triangles, let’s be a little careful to avoid double counting. Let’s use the following
scheme to ignore certain triangles, which will give a valid lower bound and also corresponds to the above
shading.

* First, cross off all triangles at the boundary of a piece of f, meaning an interval in P4(f). Consequently,
Na(f) triangles are removed. (Note: we need to do this because we didn’t require f to be continuous;
the boundary of a piece can thus trigger a jump across 1/2.)

e Within each interval of P4(f), f is affine, thus additionally cross off any triangle where f crosses 1/2,
meaning N4(f) additional triangles are removed.

o At this point, 2 - Na(f) triangles are crossed off. Consider the contiguous groups of uncrossed triangles;
if any group has odd cardinality, cross off a single endpoint, thus leaving an even number of triangles.
This crosses off at most 2 - N4(f) additional triangles.

¢ The remaining contiguous pieces of triangles all now denote regions where f is either bounded below
by 1/2, or bounded above by 1/2. Thus cross off half of all unmarked triangles, those on the same side
of 1/2 as f; the remaining triangles can all be shaded in, and are guaranteed to not cross f.

After all these operations,

(2k2+3 -1= 4NA(f)) > 2k2+2 _ % _ 2k2+1 > 2k2'

N~

#triangles >
Thus

/ |A¥+3(x) — f(x)|dx > [#triangles] - [triangle areal
[0,1]

- amen)] [

43 _1_qa.o]. |1
> [274 - 1-4.27] [2k2+6]

=

>2k2+1_ 1
2 mw - m

Before adjourning this section, let’s point out some crucial prior work.

¢ Hastad| (1986) gave the classic depth hierarchy theorem for boolean circuits, using both parity and
“Sipser Functions” as hard functions. Similarly to the above result, there was a gap between the depth
of the hard function and the shallow functions.

* [Rossman et al.| (2015) resolved a few issues in|Hdstad(s result, namely: the depth gap between hard and
comparison circuits was just 1, and the error lower bound was 1/2 — o(1). The construction used the
proof technique due to Hdstad| (1986), and the hard functions were a variant of the Sipser functions.

¢ [Eldan and Shamir|(2015) showed that there exist 3-layer neural networks which can not be approximated
by 2-layer networks unless they have 27 times as many nodes. Recently, Daniely|(2017) provided a
vastly simplified proof.

2 Squaring with neural nets

[We started this topic; we’ll do it in detail next lecture.]

References

Amit Daniely. Depth separation for neural networks. In COLT, 2017.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. 2015. arXiv:1512.03965
[cs.LG].

Johan Hastad. Computational Limitations of Small Depth Circuits. PhD thesis, Massachusetts Institute of
Technology, 1986.

Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth hierarchy theorem for
boolean circuits. In FOCS, 2015.

Matus Telgarsky. Representation benefits of deep feedforward networks. 2015. arXiv:1569.08101v2
[cs.LG].

Matus Telgarsky. Benefits of depth in neural networks. In COLT, 2016. arXiv:1602.04485v1 [cs.LG].

	Depth hierarchy theorem for neural nets
	Squaring with neural nets

