# ML Theory Lecture 7 

Matus Telgarsky

## 1 Depth hierarchy theorem for neural nets

Recall that a function $f$ is piecewise affine when there exists a partition of $\mathbb{R}$ into intervals so that $f$ is affine within each pieces; let $N_{A}(f)$ denote the minimum number of pieces in this partition (possibly $N_{A}(f)=\infty$ ), and let $P_{A}(f)$ be some partition with $N_{A}(f)=\left|P_{A}(f)\right|$ (note that $P_{A}(f)$ is not unique).

We concluded last lecture with a 4 part lemma, the key part of which was an upper bound on the number of affine pieces in a single neural network node.

Lemma 1.1. Let univariate functions $f, g,\left(g_{1}, \ldots, g_{t}\right)$ and scalars $\left(a_{1}, \ldots, a_{t}, b\right)$ be given. Then

$$
N_{A}\left(x \mapsto f\left(\sum_{i} a_{i} g_{i}(x)+b\right)\right) \leq N_{A}(f) \cdot \sum_{i} N_{A}\left(g_{i}\right)
$$

Invoking this lemma inductively gives a bound on $N_{A}(f)$ where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a neural net.

Theorem 1.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function computed by a neural network with $L$ layers, every activation $\sigma$ satisfies $N_{A}(\sigma) \leq t$, and layer $i$ has $N_{i}$ nodes, with $N:=\sum_{i} N_{i}$ for convenience. The following bounds hold.

1. Consider any node in layer $i$, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ denote the computation of this node as a function of the network input. Then $N_{A}(g) \leq t^{i} \prod_{j<i} N_{j}$.
2. $N_{A}(f) \leq\left(\frac{t N}{L}\right)^{L}$.

Remark 1.3. - We will establish this bound via elementary means; in the more general case of multivariate inputs, VC arguments can be adapted to give similar bounds.

- As a sanity check, let's consider $N_{A}\left(\Delta^{k}\right)$. We know that $\Delta^{k}$ is $2^{k-1}$ copies of $\Delta$, meaning along [ 0,1 ] it consists of $2^{k}$ distinct affine functions. Account for the behavior outside this interval,

$$
N_{A}\left(\Delta^{k}\right)=2+2^{k}
$$

Let's also prove it via the preceding theorem. The construction uses $2 k$ layers and $3 k$ nodes, and moreover $N_{A}\left(\sigma_{\mathrm{r}}\right)=2$, thus

$$
N_{A}(f) \leq\left(\frac{2 \cdot 3 k}{2 k}\right)^{2 k}=9^{k}
$$

Upon further inspection, the $\Delta^{k}$ construction can remove the layers with single nodes and make use of $k+1$ layers, giving the tighter estimate $6^{k+1}$.
We are also losing some factors because we didn't require piecewise affine functions to be continuous. Taking all this together, $\Delta^{k}$ is pretty efficient at meeting the bound. This is essential because we want $N_{A}$ to be a measure of complexity of neural networks which is small for shallow networks and not only large but also roughly tight for $\Delta^{k}$.

Proof. First note that the second claim follows from the first. Indeed, the output node, as a function of the input, computes $f$, thus $N_{L}=1$ implies

$$
N_{A}(f) \leq t^{L} \prod_{j \leq i} N_{j}
$$

The bound follows by considering the worse case for $\prod_{j<i} N_{j}$; this can be bounded in various ways, one being Jensen's inequality:

$$
\prod_{j \leq L} N_{j}=\exp \sum_{j \leq L} \ln N_{j}=\exp \frac{1}{L} \sum_{j \leq L} L \ln N_{j} \leq \exp L \ln \sum_{j \leq L} \frac{N_{j}}{L}=\left(\frac{N}{L}\right)^{L}
$$

This bound is almost attained by making all nodes by making all layers have the same number of nodes (and this solution can be grinded out via the Lagrangian); it's only "almost" because $N_{L}=1$.

Let's turn to proving the first part via induction on layers. The induction will use the simplifying trick of starting from layer 0 , the first input; for this reason, define $N_{0}:=1$, which does not change the product term $\prod_{j<i} N_{j}$.

For that base case, there is nothing to show; the input is an affine function of the input (identity mapping), thus the number of pieces is $1=t^{0} \prod_{j<0} N_{j}$.

For the inductive step, suppose the nodes in layer $i$, treated as functions of the network input, compute $\left(g_{1}, \ldots, g_{N_{i}}\right)$ with

$$
N_{A}\left(g_{j}\right) \leq t^{i} \prod_{j<i} N_{j}
$$

Now consider any node in layer $i+1$, and let $g$ denote its output as a function of the network, and let $\sigma$ denote its activation. Combining the preceding inductive hypothesis with Lemma 1.1.,

$$
N_{A}(g) \leq N_{A}(\sigma) \sum_{j=1}^{N_{i}} N_{A}\left(g_{j}\right) \leq t \sum_{j=1}^{N_{i}} t^{i} \prod_{j<i} N_{j} \leq t^{i+1} \prod_{j<i+1} N_{j}
$$

Combining this estimate with the structure of $\Delta^{k}$ from the last lecture gives the following separation result (called a "depth hierarchy theorem" in TCS).

Theorem 1.4 (Telgarsky (2015, 2016)). Let any integer $k \geq 2$ be given. Then the function $\Delta^{k^{2}+3}$ can be represented as a ReLU network with $3 k^{2}+9$ total nodes and $2 k^{2}+6$, however any function $f$ represented as a ReLU network with $\leq 2^{k}$ nodes and $\leq k$ layers can not approximate it in $L_{1}$ :

$$
\left\|\Delta^{k^{2}+3}-f\right\|_{1}=\int_{[0,1]}\left|\Delta^{k}(x)-f(x)\right| \mathrm{d} x \geq \frac{1}{32}
$$

Remark 1.5. - Note that result has various inefficiences: we want to compare $k$-layered functions to $(k+1)$-layered functions rather than $\left(2 k^{2}+6\right)$-layered functions; $1 / 32$ should be $1 / 2-o(1)$; we only exhibited one hard function, rather than many, or discussing natural functions (for instance as found by sgd); the bound has only combinatorial quantities and no sensitivity to weight magnitudes.

- The proof will use $N_{A}$ to essentially count oscillations, however just as in Homework 0, this will not suffice: we will need the regularity of $\Delta^{k^{2}+3 \prime}$ s oscillations.
- We preferred $\|\cdot\|_{\mathrm{u}}$ for upper bounds, but for lower bounds $\|\cdot\|_{1}$ is better; it tells us that we can't get close to the target function for a decent fraction of the space.
- It is essential that the right hand side is a constant, independent of $k$.

Proof. The lemma in the last lecture established that $\Delta^{k^{2}+3}$ consists of $k^{2}+2$ copies of $\Delta$, uniformly squeezed to fit within $[0,1]$; this written compactly as

$$
\Delta^{k^{2}+3}(x)=\Delta\left(\left\langle 2^{k^{2}+2} x\right\rangle\right)
$$

On the other hand, suppose $f$ has $\leq 2^{k}$ nodes and $L \leq k$ layers; Theorem 1.2 tells us

$$
N_{A}(f) \leq\left(\frac{2 \cdot 2^{k}}{L}\right)^{L} \leq\left(\frac{2 \cdot 2^{k}}{k}\right)^{k} \leq 2^{k^{2}}
$$

where the substitution of $L$ with $k$ is due to $L=k$ maximizing the expression, for instance as can be determined by differentiating. Let's put everything we just established into a single plot of $\Delta^{k^{2}+3}$ and $f$.


This plot has some parts shaded in. Recall that our goal is to lower bound the $L_{1}$ distance between $f$ and $\Delta^{k^{2}+3}$. Inspecting the plot, a lower bound can be constructed as follows:

- Subdivide $[0,1]$ into regions according to $f$ being either above or below $1 / 2$.
- Let's split $\Delta^{k^{2}+3}$ by $x \mapsto 1 / 2$, obtaining $2^{k^{2}+3}-1$ triangles (we lose one at the boundaries).
- Whenever $f$ is above $1 / 2$, we can count the triangles below $1 / 2$; analogously, when $f$ is below $1 / 2$, count the triangles above $1 / 2$.
- By construction, the total area in these triangles lower bounds the $L_{1}$ distance.

In order to count these triangles, let's be a little careful to avoid double counting. Let's use the following scheme to ignore certain triangles, which will give a valid lower bound and also corresponds to the above shading.

- First, cross off all triangles at the boundary of a piece of $f$, meaning an interval in $P_{A}(f)$. Consequently, $N_{A}(f)$ triangles are removed. (Note: we need to do this because we didn't require $f$ to be continuous; the boundary of a piece can thus trigger a jump across $1 / 2$.)
- Within each interval of $P_{A}(f), f$ is affine, thus additionally cross off any triangle where $f$ crosses $1 / 2$, meaning $N_{A}(f)$ additional triangles are removed.
- At this point, $2 \cdot N_{A}(f)$ triangles are crossed off. Consider the contiguous groups of uncrossed triangles; if any group has odd cardinality, cross off a single endpoint, thus leaving an even number of triangles. This crosses off at most $2 \cdot N_{A}(f)$ additional triangles.
- The remaining contiguous pieces of triangles all now denote regions where $f$ is either bounded below by $1 / 2$, or bounded above by $1 / 2$. Thus cross off half of all unmarked triangles, those on the same side of $1 / 2$ as $f$; the remaining triangles can all be shaded in, and are guaranteed to not cross $f$.

After all these operations,

$$
\text { \#triangles } \geq \frac{1}{2}\left(2^{k^{2}+3}-1-4 N_{A}(f)\right) \geq 2^{k^{2}+2}-\frac{1}{2}-2^{k^{2}+1} \geq 2^{k^{2}}
$$

Thus

$$
\begin{aligned}
\int_{[0,1]}\left|\Delta^{k^{2}+3}(x)-f(x)\right| \mathrm{d} & \geq[\text { \#triangles }] \cdot[\text { triangle area }] \\
& \geq\left[\frac{1}{2}\left(2^{k^{2}+3}-1-4 N_{A}(f)\right)\right] \cdot\left[\frac{1}{4} \cdot \frac{1}{2^{k^{2}+3}}\right] \\
& \geq\left[2^{k^{2}+3}-1-4 \cdot 2^{k^{2}}\right] \cdot\left[\frac{1}{2^{k^{2}+6}}\right] \\
& \geq \frac{2^{k^{2}+1}}{2^{k^{2}+6}}=\frac{1}{32} .
\end{aligned}
$$

Before adjourning this section, let's point out some crucial prior work.

- Håstad (1986) gave the classic depth hierarchy theorem for boolean circuits, using both parity and "Sipser Functions" as hard functions. Similarly to the above result, there was a gap between the depth of the hard function and the shallow functions.
- Rossman et al. (2015) resolved a few issues in Håstad's result, namely: the depth gap between hard and comparison circuits was just 1 , and the error lower bound was $1 / 2-o(1)$. The construction used the proof technique due to Håstad (1986), and the hard functions were a variant of the Sipser functions.
- Eldan and Shamir (2015) showed that there exist 3-layer neural networks which can not be approximated by 2-layer networks unless they have $2^{d}$ times as many nodes. Recently, Daniely (2017) provided a vastly simplified proof.


## 2 Squaring with neural nets

[ We started this topic; we'll do it in detail next lecture. ]

## References

Amit Daniely. Depth separation for neural networks. In COLT, 2017.
Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. 2015. arXiv: 1512.03965 [cs.LG].

Johan Håstad. Computational Limitations of Small Depth Circuits. PhD thesis, Massachusetts Institute of Technology, 1986.

Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth hierarchy theorem for boolean circuits. In FOCS, 2015.

Matus Telgarsky. Representation benefits of deep feedforward networks. 2015. arXiv:1509.08101v2 [cs.LG].

Matus Telgarsky. Benefits of depth in neural networks. In COLT, 2016. arXiv:1602.04485v1 [cs.LG].

