
ML Theory Lecture 7

Matus Telgarsky

1 Depth hierarchy theorem for neural nets
Recall that a function f is piecewise affine when there exists a partition of R into intervals so that f is affine
within each pieces; let NA(f) denote the minimum number of pieces in this partition (possibly NA(f) � ∞),
and let PA(f) be some partition with NA(f) � |PA(f)| (note that PA(f) is not unique).

We concluded last lecture with a 4 part lemma, the key part of which was an upper bound on the number
of affine pieces in a single neural network node.

Lemma 1.1. Let univariate functions f , 1 , (11 , . . . , 1t) and scalars (a1 , . . . , at , b) be given. Then

NA

(
x 7→ f (

∑
i

ai1i(x) + b)
)
≤ NA(f) ·

∑
i

NA(1i).

Invoking this lemma inductively gives a bound on NA(f)where f : R→ R is a neural net.

Theorem 1.2. Let f : R→ R be the function computed by a neural network with L layers, every activation σ
satisfies NA(σ) ≤ t, and layer i has Ni nodes, with N :�

∑
i Ni for convenience. The following bounds hold.

1. Consider any node in layer i, and let 1 : R→ R denote the computation of this node as a function of the
network input. Then NA(1) ≤ t i ∏

j<i N j .

2. NA(f) ≤
(

tN
L

)L

.

Remark 1.3. • Wewill establish this bound via elementarymeans; in themore general case ofmultivariate
inputs, VC arguments can be adapted to give similar bounds.

• As a sanity check, let’s consider NA(∆k). We know that ∆k is 2k−1 copies of ∆, meaning along [0, 1] it
consists of 2k distinct affine functions. Account for the behavior outside this interval,

NA(∆k) � 2 + 2k .

Let’s also prove it via the preceding theorem. The construction uses 2k layers and 3k nodes, and
moreover NA(σr) � 2, thus

NA(f) ≤
(
2 · 3k

2k

)2k

� 9k .

Upon further inspection, the ∆k construction can remove the layers with single nodes and make use of
k + 1 layers, giving the tighter estimate 6k+1.
We are also losing some factors because we didn’t require piecewise affine functions to be continuous.
Taking all this together, ∆k is pretty efficient at meeting the bound. This is essential because we want
NA to be a measure of complexity of neural networks which is small for shallow networks and not only
large but also roughly tight for ∆k .

1

^

Proof. First note that the second claim follows from the first. Indeed, the output node, as a function of the
input, computes f , thus NL � 1 implies

NA(f) ≤ tL
∏
j≤i

N j .

The bound follows by considering the worse case for
∏

j<i N j ; this can be bounded in various ways, one
being Jensen’s inequality:∏

j≤L

N j � exp
∑
j≤L

ln N j � exp 1
L

∑
j≤L

L ln N j ≤ exp L ln
∑
j≤L

N j

L
�

(
N
L

)L

.

This bound is almost attained by making all nodes by making all layers have the same number of nodes (and
this solution can be grinded out via the Lagrangian); it’s only “almost” because NL � 1.

Let’s turn to proving the first part via induction on layers. The induction will use the simplifying trick of
starting from layer 0, the first input; for this reason, define N0 :� 1, which does not change the product term∏

j<i N j .
For that base case, there is nothing to show; the input is an affine function of the input (identity mapping),

thus the number of pieces is 1 � t0 ∏
j<0 N j .

For the inductive step, suppose the nodes in layer i, treated as functions of the network input, compute
(11 , . . . , 1Ni)with

NA(1 j) ≤ t i
∏
j<i

N j .

Now consider any node in layer i + 1, and let 1 denote its output as a function of the network, and let σ
denote its activation. Combining the preceding inductive hypothesis with Lemma 1.1,

NA(1) ≤ NA(σ)
Ni∑
j�1

NA(1 j) ≤ t
Ni∑
j�1

t i
∏
j<i

N j ≤ t i+1
∏

j<i+1
N j .

�

Combining this estimate with the structure of ∆k from the last lecture gives the following separation
result (called a “depth hierarchy theorem” in TCS).

Theorem 1.4 (Telgarsky (2015, 2016)). Let any integer k ≥ 2 be given. Then the function ∆k2+3 can be
represented as a ReLU network with 3k2 + 9 total nodes and 2k2 + 6, however any function f represented as a
ReLU network with ≤ 2k nodes and ≤ k layers can not approximate it in L1:∆k2+3 − f

1
�

∫
[0,1]

���∆k(x) − f (x)
���dx ≥ 1

32 .

Remark 1.5. • Note that result has various inefficiences: we want to compare k-layered functions to
(k + 1)-layered functions rather than (2k2 + 6)-layered functions; 1/32 should be 1/2 − o(1); we only
exhibited one hard function, rather than many, or discussing natural functions (for instance as found by
sgd); the bound has only combinatorial quantities and no sensitivity to weight magnitudes.

• The proof will use NA to essentially count oscillations, however just as in Homework 0, this will not
suffice: we will need the regularity of ∆k2+3’s oscillations.

• We preferred ‖ · ‖u for upper bounds, but for lower bounds ‖ · ‖1 is better; it tells us that we can’t get
close to the target function for a decent fraction of the space.

2

• It is essential that the right hand side is a constant, independent of k.
^

Proof. The lemma in the last lecture established that ∆k2+3 consists of k2 + 2 copies of ∆, uniformly squeezed
to fit within [0, 1]; this written compactly as

∆k2+3(x) � ∆
(〈

2k2+2x
〉)
.

On the other hand, suppose f has ≤ 2k nodes and L ≤ k layers; Theorem 1.2 tells us

NA(f) ≤
(
2 · 2k

L

)L

≤
(
2 · 2k

k

) k

≤ 2k2
,

where the substitution of L with k is due to L � k maximizing the expression, for instance as can be
determined by differentiating. Let’s put everything we just established into a single plot of ∆k2+3 and f .

1/2

1

0

∆k2+3

f

This plot has some parts shaded in. Recall that our goal is to lower bound the L1 distance between f and
∆k2+3. Inspecting the plot, a lower bound can be constructed as follows:

• Subdivide [0, 1] into regions according to f being either above or below 1/2.

• Let’s split ∆k2+3 by x 7→ 1/2, obtaining 2k2+3 − 1 triangles (we lose one at the boundaries).

• Whenever f is above 1/2, we can count the triangles below 1/2; analogously, when f is below 1/2,
count the triangles above 1/2.

• By construction, the total area in these triangles lower bounds the L1 distance.

In order to count these triangles, let’s be a little careful to avoid double counting. Let’s use the following
scheme to ignore certain triangles, which will give a valid lower bound and also corresponds to the above
shading.

• First, cross off all triangles at the boundary of a piece of f , meaning an interval in PA(f). Consequently,
NA(f) triangles are removed. (Note: we need to do this because we didn’t require f to be continuous;
the boundary of a piece can thus trigger a jump across 1/2.)

• Within each interval of PA(f), f is affine, thus additionally cross off any triangle where f crosses 1/2,
meaning NA(f) additional triangles are removed.

3

• At this point, 2 ·NA(f) triangles are crossed off. Consider the contiguous groups of uncrossed triangles;
if any group has odd cardinality, cross off a single endpoint, thus leaving an even number of triangles.
This crosses off at most 2 · NA(f) additional triangles.

• The remaining contiguous pieces of triangles all now denote regions where f is either bounded below
by 1/2, or bounded above by 1/2. Thus cross off half of all unmarked triangles, those on the same side
of 1/2 as f ; the remaining triangles can all be shaded in, and are guaranteed to not cross f .

After all these operations,

#triangles ≥ 1
2

(
2k2+3 − 1 − 4NA(f)

)
≥ 2k2+2 − 1

2 − 2k2+1 ≥ 2k2
.

Thus ∫
[0,1]
|∆k2+3(x) − f (x)| dx ≥

[
#triangles

]
·
[
triangle area

]
≥

[
1
2

(
2k2+3 − 1 − 4NA(f)

)]
·
[
1
4 ·

1
2k2+3

]
≥

[
2k2+3 − 1 − 4 · 2k2

]
·
[

1
2k2+6

]
≥ 2k2+1

2k2+6
�

1
32 .

�

Before adjourning this section, let’s point out some crucial prior work.

• Håstad (1986) gave the classic depth hierarchy theorem for boolean circuits, using both parity and
“Sipser Functions” as hard functions. Similarly to the above result, there was a gap between the depth
of the hard function and the shallow functions.

• Rossman et al. (2015) resolved a few issues in Håstad’s result, namely: the depth gap between hard and
comparison circuits was just 1, and the error lower bound was 1/2 − o(1). The construction used the
proof technique due to Håstad (1986), and the hard functions were a variant of the Sipser functions.

• Eldan and Shamir (2015) showed that there exist 3-layer neural networks which can not be approximated
by 2-layer networks unless they have 2d times as many nodes. Recently, Daniely (2017) provided a
vastly simplified proof.

2 Squaring with neural nets
[We started this topic; we’ll do it in detail next lecture.]

References
Amit Daniely. Depth separation for neural networks. In COLT, 2017.

RonenEldanandOhadShamir. Thepower of depth for feedforwardneural networks. 2015. arXiv:1512.03965
[cs.LG].

Johan Håstad. Computational Limitations of Small Depth Circuits. PhD thesis, Massachusetts Institute of
Technology, 1986.

Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth hierarchy theorem for
boolean circuits. In FOCS, 2015.

4

Matus Telgarsky. Representation benefits of deep feedforward networks. 2015. arXiv:1509.08101v2
[cs.LG].

Matus Telgarsky. Benefits of depth in neural networks. In COLT, 2016. arXiv:1602.04485v1 [cs.LG].

5

	Depth hierarchy theorem for neural nets
	Squaring with neural nets

