
ML Theory Lecture 8

Matus Telgarsky

Today we’ll finish the “succinct” and representation topics by showing how to multiply with ReLU
networks, and with some comments on generative models.

1 Squaring with neural nets
This section will show how to implement x 7→ x2; this beautiful construction is due to Yarotsky (2016).

Let’s try to brute force the simplest possible idea: let’s consider a sequence (h0 , h1 , . . .) of piecewise affine
interpolants of x2 along [0, 1], where hi(x) � x2 at the points

Si :�

(
0
2i ,

1
2i , . . . ,

2i

2i

)
.

That is to say, hi(x) � x2 for x ∈ Si , and otherwise hi interpolates between those points.

(a) h0. (b) h1. (c) h2.

For now, this construction is not so nice for ReLU approximation: it seems as though we’ll need 2i ReLUs
to approximate hi ; it turns out we’ll need only O(i)!

Let’s try to understand what is happening inductively. The base case i � 0 is easy: h0(x) � x.
Consider hi+1 and hi for i ≥ 0. Since hi is correct on Si and Si ⊆ Si+1, then hi+1(x) � hi(x) for x ∈ Si .
It remains to consider x ∈ Si+1 \Si , meaning x � (2 j+1)/2i+1 for some j ∈ {0, . . . , 2i −1}. For convenience,

write ε � 1/2i+1; then

hi(x) − hi+1(x) �
1
2

(
(x − ε)2 + (x + ε)2

)
− x2

�

(
x2

+ ε2
)
− x2

� ε2.

The key thing here is the gap is a constant!
Putting the two cases together, for x ∈ Si+1,

hi+1(x) � hi(x) −
1

4i+11[x ∈ Si+1 \ Si]︸                   ︷︷                   ︸
?

.

Now let’s consider the behavior of the interpolation, so we can discuss x ∈ [0, 1]. The difference hi+1(x)
must be piecewise affine and indeed it must be the linear interpolation of the term? above, as depicted in
the following plots.
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(a)?. (b) Piecewise affine interpolation.

This interpolation is a familiar function: for x ∈ [0, 1],

hi+1 � hi −
∆i+1

4i+1 .

Since h0(x) � x,

hi(x) � h0(x) +
i−1∑
j�0

(
h j+1(x) − h j(x)

)
� x −

i∑
j�1

∆ j(x)
4 j .

Since all terms can be written with ReLUs, this gives the following.

Theorem 1.1 (Yarotsky (2016)). The functions (hi)i≥0 defined above satisfy the following properties.

1. hi is the piecewise-affine interpolation of x2 along [0, 1] with interpolation points Si .

2. supx∈[0,1] |hi(x) − x2 | ≤ 4−i−1.

3. hi can be written as a ReLU network consisting of 2i layers and 5i nodes.

4. Any ReLU network f with ≤ L layers and ≤ N nodes satisfies∫
[0,1]
( f (x) − x2)2 dx ≥ 1

5760(2N/L)4L .

Proof. 1. This was handled above.

2. Fix i, and set τ :� 2−i , meaning τ is the distance between interpolation points. The error between x2

and hi is thus bounded above by

sup
x∈[0,1−τ]

sup
z∈[0,τ]

τ − z
τ

(
x2

)
+

z
τ
(x + τ)2 − (x + z)2 �

1
τ

sup
x∈[0,1−τ]

sup
z∈[0,τ]

2xzτ + zτ2 − 2xzτ − τz2

�
1

4τ sup
x∈[0,1−τ]

τ3

4 �
τ2

4 � 4−i−1.

3. The relu network is as follows. It contains ∆i , but also an “accumulation line” where it first passes
forwards x, and thereafter subtracts off each ∆ j/4 j as it is computed. ∆i requires 2i layers and 3i nodes,
and the accumulation line is a single chain of 1 node per each of 2i layers.

4. By a bound from last lecture, NA( f ) ≤ (2N/L)L. Using a symbolic package to differentiate, for any
interval [a , b],

min
(c ,d)

∫
[a ,b]
(x2 − (cx + d))2 dx �

(b − a)5
180 .

Let S index the subintervals of length at least 1/(2N)with N :� NA( f ), and restrict attention to [0, 1].
Then ∑

[a ,b]∈S

(b − a) � 1 −
∑
[a ,b]<S

(b − a) ≥ 1 − N/(2N) � 1/2.
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Consequently, ∫
[0,1]
(x2 − f (x))2 dx �

∑
[a ,b]∈PA( f )

∫
[a ,b]∩[0,1]

(x2 − f (x))2 dx

≥
∑
[a ,b]∈S

(b − a)5
180

≥
∑
[a ,b]∈S

(b − a)
2880N4 ≥

1
5760N4 .

�

Remark 1.2. From squaring we can get many other things. First of all,

(x , y) 7→ x y �
1
2

(
(x + y)2 − x2 − y2

)
.

Once we have multiplication, we get polynomials, which give smooth functions essentially via Taylor
expansion (Yarotsky, 2016). We can also approximate division and thus rational functions (Telgarsky,
2017). ^

2 Probability distributions
We also discussed how to represent various probability distributions. Here is a brief summary: [ highly
abridged ]

• One classical model is to approximate a density with 1/n ∑n
i�1 k(xi , x), where k(·, ·), is a density kernel,

for instance a Gaussian. By our representation results for RBF SVMs, this can approximate any
continuous density. Note that KDE also gives an algorithm, albeit a simple one: sample (xi)ni�1 from a
continuous density, and plug them into the estimator above. Note that this estimator suffers a bad
curse of dimension.

• Wementioned Gaussian Mixtures, which have some similarities to KDE, but there a beneficial scenarios
where they are more succinct.

• We also discussed generative networks. These operate by first sampling x ∼ µ, where µ is some
efficiently sampleable distribution, and thereafter outputting f (x), where f is a neural network. In the
optimal transport literature, this is written f #µ, if random variable Y has distribution f #µ and X has
distribution µ, then Pr[Y ∈ S] � Pr[X ∈ f −1(S)].
I mentioned that in the univariate case, we can prove we can represent some distributions in this way
using the inverse CDF sampling method. In more general cases, there are similar things in the literature
on optimal transport, but typically requiring equal input and output dimensions (Villani, 2003). For
differing dimensions, you have to make space-filling curves, as in a recent paper by Bolton Bailey and I.

References
Matus Telgarsky. Neural networks and rational functions. In ICML, 2017.

Cedric Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American
Mathematical Society, 2003.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. 2016. arXiv:1610.01145
[cs.LG].

3


	Squaring with neural nets
	Probability distributions

