
Lecture 9. (Sketch.)
Today we’ll begin segment 2 of the course: optimization and online
learning.

We’ll start with the Perceptron algorithm, which is in the online
setting, and easy to jump into.

1. Basics of optimization and online learning.
I Batch optimization: ((xi , yi ))m

i=1 given, approximately solve
inff ∈F R̂`(f (xi ), yi ).
I Standard approach: parameterize Fp by w ∈ Rp, approximately

solve the infimum via continuous optimization over Rp.
Common methods include gradient descent (GD) and stochastic
gradient descent. ML lately does not make widespread use of
second-order methods.

Remark. The above comment reflects the classical view of GD
as nothing more than an optimizer, but recently there’s an
exciting implicit regularization perspective.

I Online learning: process data in a (possibly adversarial) stream.
1. Initialize prediction model.

2. For t = 1, . . .:
2.1 Receive xi ; predict ŷi .

2.2 Suffer loss `(ŷi , yi ) (nature chooses ŷi given yi !); update model.

2. Linearly separable data.
I For today, we assume a linear model: f (x) = 〈w , x〉.

I Given a univariate convex loss `, then `(f (x)y) = `(〈w , x〉 y) is
convex in w .

I Often in optimization, we aim to prove that the iterates wi
converge to some approximate optimum w̄ , or that we
approximately minimize the convex risk R̂ upon which we run
gradient descent. Today we’ll aim for something different,
namely a guarantee on a nonconvex, nondifferentiable objective
which we are not directly minimizing, and we’ll also use a
different assumption.
I This assumption is linear separability:
∃ū, ‖ū‖ = 1, ∃γ > 0 s.t. 〈ū, xy〉 ≥ γ ∀(x , y).
[ In class, pictures were drawn, and the two cases y ∈ ±1 were
discussed. ]

We can rewrite linear separability as an optimization problem:

γ := max
‖u‖≤1

min
i
〈u, xy〉 ; (1)

separablility means γ > 0. Scaling both sides by 1/γ,

1 = max
‖u‖≤1/γ

min
i
〈u, xy〉

This suggests an equivalent constrained form:

min
w

1
2‖w‖

2 s.t. 1 ≤ 〈w , xiyi〉 ∀i , (2)

and its Lagrangian

min
w

sup
C>0

1
2‖w‖

2 + C
n∑

i=1
max{0, 1− 〈w , xiyi〉}. (3)

This last form is the “hard margin SVM”.

Exercise: Prove 1, 2, 3 are equivalent.



We can relax the final Lagrangian into the familiar soft-margin SVM:

inf
w

1
2‖w‖

2 + C
n∑

i=1
`h(−〈w , xiyi〉),

where C ≥ 0 and `h(z) := max{0, 1 + z} is the hinge loss.

This form is also called the “soft margin SVM”.

[ In class, we discussed this a little geometrically, and running
gradient descent on it and its dual. ]

3. Perceptron.
Consider a simpler approach: let’s run SGD on the objective after
stripping away ‖w‖2 and the "1 + ” in the hinge loss. That means
SGD on the ReLU loss:

w ′ := w − ∂w (w 7→ σr(〈w ,−xy〉)) = w + xy1[〈w ,−xy〉 ≥ 0],

where σr(z) := max{0, z}, and usually the initial point is w0 = 0.
Convention: always take the subgradient 1 at 0 (this matters a
lot). . .

Geometric interpretation:
I When 1[〈w , xy〉 ≤ 0] (mistake), we rotate towards the

example.
I Otherwise, we do nothing.

Note. We predict with ŷ := 2 · 1[〈w , x〉 ≥ 0]− 1, so
1[ŷ 6= y ] 6= 1[〈w , xy〉 ≤ 0] when w = 0 and y = +1;

Remark (optimization). We defined the iteration as SGD on the
ReLU loss:

wi := wi−1 − ∂w (w 7→ σr(〈w ,−xiyi〉))(wi−1).

The optimization view, then, would be that SGD will be
approximately minimizing the objective

inf
w

n∑

i=1
σr(〈w ,−xiyi〉 .

I 0 is the optimal objective value (i.e., because σr ≥ 0 and since
w = 0 attains this lower bound).

I Therefore w0 = 0, the standard initialization, is optimal!
I By choosing 1 as the subgradient at 0, we have deliberately

moved away from the global optimum!
I The explanation is that the ReLU loss is only used as a

surrogate potential function in this problem; it is not a quantity
we actually care about.

Theorem. Suppose linear separability (i.e., 〈ū, xy〉 ≥ γ > 0),
‖xy‖ ≤ 1, and all (wi , yi ) are given by Perceptron. Then

∑

i≥1
1[ŷi 6= yi ] ≤

1
γ2 .

Remark. In the first lecture, we said that learning requires
“coherence” between past and future. In this case, (ū, γ) provide
that coherence: they guarantee that (some) good choices in the
past will be good in the future.



Proof. Define the set Mt :=
{
i ≤ t : 1[〈wi−1, xiyi〉 ≤ 0

}
, a

superset of the iterations making mistakes up through time t.
Momentarily we’ll show |Mt | ≤ 1/γ2 for arbitrary t, which proves
the result since |Mt | increases monotonically and∑t

i=1 1[ŷi 6= yi ] ≤ |Mt |.
Continuing, let’s go back to our intuition: mistakes rotate us
towards xiyi , which we can take more generally to mean “rotation
towards correctness”, or in other words ū. This suggests a potential
function

1
2

∥∥∥∥∥
wi
‖wi‖

− ū
∥∥∥∥∥

2
= 1−

〈
wi
‖wi‖

, ū
〉
.

Note. We won’t show this quantity converges to anything, it’s just
a proof technique and intuition.
I Indeed, we will not in general converge to ū; consider

xiyi = (1, 0) for i ≥ 1, which means wi = (1, 0) for i ≥ 1, but
we can choose any ū with positive coordinates to satisfy the
conditions of the theorem.

To lower bound 〈wt , ū〉, note by induction wt := ∑
i∈Mt xiyi , thus

〈wt , ū〉 =
∑

i∈Mt

〈xiyi , ū〉 ≥ γ|Mt |.

To upper bound 〈wt , ū〉 ≤ ‖wt‖, since 〈wi−1, xiyi〉 ≤ 0 when
i ∈ Mi ,
‖wi‖2 = ‖wi−1 + xiyi1[i ∈ Mi ]‖2

= ‖wi−1‖2 + 2
〈
xiyi1[i ∈ Mi ],wi−1

〉
+ ‖xiyi1[i ∈ Mi‖2

= ‖wi−1‖2 + 2 〈wi−1, xiyi〉1[i ∈ Mi ] + 1[i ∈ Mi ]‖xiyi‖2

≤ ‖wi−1‖2 + 0 + 1[i ∈ Mi ],
which by induction and the monotonicity property Mi ⊆ Mt gives

‖wt‖2 ≤ ‖w0‖2 +
∑

i<t
1[i ∈ Mt ] = |Mt |.

Combining the upper and lower bounds,

γ|Mt | ≤ 〈wt , ū〉 ≤
√
|Mt | =⇒ |Mt | ≤

1
γ2 .

Remark.
I As with SVM, Perceptron can be kernelized. In particular,

given a kernel function k(·, ·),

wt :=
∑

i∈Mt

xiyi becomes wt :=
∑

i∈Mt

yik(xi , ·),

and 〈wt , x〉 = ∑
i∈Mt yik(xi , x).

I Many parts of the Perceptron proof go through in the
nonconvex case. Perhaps we’ll see more of it in time to
come. . .


