Lecture 9. (Sketch.)

Today we'll begin segment 2 of the course: optimization and online
learning.

We'll start with the Perceptron algorithm, which is in the online
setting, and easy to jump into.

1. Basics of optimization and online learning.
» Batch optimization: ((x;,y;))™, given, approximately solve
infrer Re(f(xi), yi)-

» Standard approach: parameterize F, by w € RP, approximately
solve the infimum via continuous optimization over R”.
Common methods include gradient descent (GD) and stochastic
gradient descent. ML lately does not make widespread use of
second-order methods.

Remark. The above comment reflects the classical view of GD
as nothing more than an optimizer, but recently there's an
exciting implicit regularization perspective.

» Online learning: process data in a (possibly adversarial) stream.
1. Initialize prediction model.
2. Fort=1,...
2.1 Receive x;; predict y;.

2.2 Suffer loss £(9:,y;) (nature chooses §; given y;!); update model.

2. Linearly separable data.

» For today, we assume a linear model: f(x) = (w, x).

» Given a univariate convex loss ¢, then ¢(f(x)y) = £({w, x) y) is
convex in w.

» Often in optimization, we aim to prove that the iterates w;
converge to some approximate optimum w, or that we
approximately minimize the convex risk R upon which we run
gradient descent. Today we'll aim for something different,
namely a guarantee on a nonconvex, nondifferentiable objective
which we are not directly minimizing, and we'll also use a
different assumption.

» This assumption is linear separability:
Ju, jul| =1, 3y > 0s.t. (U, xy) > v VY(x,y).
[ In class, pictures were drawn, and the two cases y € +1 were
discussed. |

We can rewrite linear separability as an optimization problem:

‘= ma i ; 1
max min (u, xy) (1)

separablility means 7 > 0. Scaling both sides by 1/,

1= max min(u,xy
ull <1/~ i < )

This suggests an equivalent constrained form:
1 2 .
min EHWH s.tt. 1 <(w,xy;) Vi, (2)

and its Lagrangian
. 1 2 &
min sup =||w|| + CZmax{O,l— (w, xiyi) } (3)
W >0 2 i1
This last form is the “hard margin SVM",

Exercise: Prove 1, 2, 3 are equivalent.




We can relax the final Lagrangian into the familiar soft-margin SVM:

1 n
iDVf§||WH2 + CY ba(— (w, xiyi)),
i=1

where C > 0 and ¢,(z) := max{0, 1 + z} is the hinge loss.
This form is also called the “soft margin SVM".

[ In class, we discussed this a little geometrically, and running
gradient descent on it and its dual. |

3. Perceptron.

Consider a simpler approach: let's run SGD on the objective after
stripping away ||w||?> and the "1 4+ " in the hinge loss. That means
SGD on the RelLU loss:

w = w — 0y (w = o ({w, —xy))) = w + xyL[{w, —xy) > 0],

where o,(z) := max{0, z}, and usually the initial point is wy = 0.
Convention: always take the subgradient 1 at 0 (this matters a
lot). ..

Geometric interpretation:

» When 1[{w, xy) < 0] (mistake), we rotate towards the
example.

» Otherwise, we do nothing.

Note. We predict with § :=2 - 1[(w,x) > 0] — 1, so
1[y # y] # 1[{w, xy) < 0] when w =0 and y = +1;

Remark (optimization). We defined the iteration as SGD on the
RelLU loss:

wi 1= wi—1 — Ow(w — o ({w, —x;yi)))(wi—1).

The optimization view, then, would be that SGD will be
approximately minimizing the objective

n
iDVfZUr“Wa —XiYi) -
i—1

» 0 is the optimal objective value (i.e., because o, > 0 and since

w = 0 attains this lower bound).
» Therefore wy = 0, the standard initialization, is optimal!

» By choosing 1 as the subgradient at 0, we have deliberately
moved away from the global optimum!

P> The explanation is that the ReLU loss is only used as a

surrogate potential function in this problem; it is not a quantity

we actually care about.

Theorem. Suppose linear separability (i.e., (7, xy) >~ > 0),
lIxy|| <1, and all (w;, y;) are given by Perceptron. Then

S 1y £y < ;2

i>1

Remark. In the first lecture, we said that learning requires
“coherence” between past and future. In this case, (u,) provide
that coherence: they guarantee that (some) good choices in the
past will be good in the future.




Proof. Define the set My := {i <t : 1[{wj_1,x;y;) <0}, a
superset of the iterations making mistakes up through time t.
Momentarily we'll show |M;| < 1/~2 for arbitrary t, which proves
the result since |M;| increases monotonically and

Sic L[ # il < |Myl.

Continuing, let's go back to our intuition: mistakes rotate us
towards x;y;, which we can take more generally to mean “rotation
towards correctness”, or in other words u. This suggests a potential
function

1

2

Wi

2 Wi
7} :1—< u)y.
[[will

Note. We won't show this quantity converges to anything, it's just
a proof technique and intuition.

[[will

» Indeed, we will not in general converge to u; consider
x;yi = (1,0) for i > 1, which means w; = (1,0) for i > 1, but
we can choose any U with positive coordinates to satisfy the
conditions of the theorem.

To lower bound (w;, i), note by induction w; := 3.y, Xiyi, thus

(we, @) = > (xiyi, 1) > 7| M.
i€ M;

To upper bound (w;, i) < ||wg||, since (w;_1, X;y;) < 0 when
i€ M;,
lwil[? = [[wi—1 + xiyiL[i € M]||?

= [Iwi—1]® + 2 (xiyil[i € Mi], wi—1) + [|xiyil[i € M;[|?
= Wil + 2 (wi—1, xiyi) 1[i € Mi] + 1[i € Mi]||xiyi|?
< |[wial? +0+1[i € M),

which by induction and the monotonicity property M; C M, gives

lwel|? < [lwol* + D 1[i € Me] = |My].

i<t
Combining the upper and lower bounds,
= 1
YIMe| < (we, ) < /| Myl — M| < .

v

Remark.

» As with SVM, Perceptron can be kernelized. In particular,
given a kernel function k(-,-),

W 1= Z XiYi becomes Wt 1= Z yik(xi, "),
i€ My ieM;
and (we, x) = i, Yik(xi, ).

» Many parts of the Perceptron proof go through in the
nonconvex case. Perhaps we'll see more of it in time to
come. ..




